Synthesis and characterization of novel cationic lipid and cholesterol-coated gold nanoparticles and their interactions with dipalmitoylphosphatidylcholine membranes

被引:40
作者
Bhattacharya, S [1 ]
Srivastava, A
机构
[1] Indian Inst Sci, Dept Organ Chem, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem Biol Unit, Bangalore 560012, Karnataka, India
关键词
D O I
10.1021/la0269513
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Novel gold nanoparticles bearing cationic single-chain, double-chain, and cholesterol based amphiphilic units have been synthesized. These nanoparticles represent size-stable entities in which various cationic lipids have been immobilized through their thiol group onto the gold nanoparticle core. The resulting colloids have been characterized by UV-vis, H-1 NMR, FT-IR spectroscopy, and transmission electron microscopy. The average size of the resultant nanoparticles could be controlled by the relative bulkiness of the capping agent. Thus, the average diameters of the nanoparticles formed from the cationic single-chain, double-chain, and cholesterol based thiolate-coated materials were 5.9,2.9, and 2.04 nm, respectively. We also examined the interaction of these cationic gold nanoparticles with vesicular membranes generated from dipalmitoylphosphatidylcholine (DPPC) lipid suspensions. Nanoparticle doped DPPC vesicular suspensions displayed a characteristic surface plasmon band in their UV-vis spectra. Inclusion of nanoparticles in vesicular suspensions led to increases in the aggregate diameters, as evidenced from dynamic light scattering. Differential scanning calorimetric examination indicated that incorporation of single-chain, double-chain, and cholesteryl-linked cationic nanoparticles exert variable effects on the DPPC melting transitions. While increased doping of single-chain nanoparticles in DPPC resulted in the phases that melt at higher temperatures, inclusion of an incremental amount of double-chain nanoparticles caused the lowering of the melting temperature of DPPC. On the other hand, the cationic cholesteryl nanoparticle interacted with DPPC in membranes in a manner somewhat analogous to that of cholesterol itself and caused broadening of the DPPC melting transition.
引用
收藏
页码:4439 / 4447
页数:9
相关论文
共 53 条
[1]   Organization of 'nanocrystal molecules' using DNA [J].
Alivisatos, AP ;
Johnsson, KP ;
Peng, XG ;
Wilson, TE ;
Loweth, CJ ;
Bruchez, MP ;
Schultz, PG .
NATURE, 1996, 382 (6592) :609-611
[2]   Optical absorption spectra of nanocrystal gold molecules [J].
Alvarez, MM ;
Khoury, JT ;
Schaaff, TG ;
Shafigullin, MN ;
Vezmar, I ;
Whetten, RL .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (19) :3706-3712
[3]   Structure and chain dynamics of alkanethiol-capped gold colloids [J].
Badia, A ;
Gao, W ;
Singh, S ;
Demers, L ;
Cuccia, L ;
Reven, L .
LANGMUIR, 1996, 12 (05) :1262-1269
[4]   A dynamic view of self-assembled monolayers [J].
Badia, A ;
Lennox, RB ;
Reven, L .
ACCOUNTS OF CHEMICAL RESEARCH, 2000, 33 (07) :475-481
[5]   Vesicle formation from oligo(oxyethylene)-bearing cholesteryl amphiphiles: Site-selective effects of oxyethylene units on the membrane order and thickness [J].
Bhattacharya, S ;
Krishnan-Ghosh, Y .
LANGMUIR, 2001, 17 (07) :2067-2075
[6]   SYNTHESIS OF THIOL-DERIVATIZED GOLD NANOPARTICLES IN A 2-PHASE LIQUID-LIQUID SYSTEM [J].
BRUST, M ;
WALKER, M ;
BETHELL, D ;
SCHIFFRIN, DJ ;
WHYMAN, R .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1994, (07) :801-802
[7]   SYNTHESIS AND REACTIONS OF FUNCTIONALIZED GOLD NANOPARTICLES [J].
BRUST, M ;
FINK, J ;
BETHELL, D ;
SCHIFFRIN, DJ ;
KIELY, C .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1995, (16) :1655-1656
[8]   Gold nanoelectrodes of varied size: Transition to molecule-like charging [J].
Chen, SW ;
Ingram, RS ;
Hostetler, MJ ;
Pietron, JJ ;
Murray, RW ;
Schaaff, TG ;
Khoury, JT ;
Alvarez, MM ;
Whetten, RL .
SCIENCE, 1998, 280 (5372) :2098-2101
[9]   Mercaptoammonium-monolayer-protected, water-soluble gold, silver, and palladium clusters [J].
Cliffel, DE ;
Zamborini, FP ;
Gross, SM ;
Murray, RW .
LANGMUIR, 2000, 16 (25) :9699-9702
[10]   Incorporation of oxyethylene units between hydrocarbon chain and pseudoglyceryl backbone in cationic lipid potentiates gene transfection efficiency in the presence of serum [J].
Dileep, PV ;
Antony, A ;
Bhattacharya, S .
FEBS LETTERS, 2001, 509 (02) :327-331