Involvement of EphB1 receptor/ephrinB2 ligand in neuropathic pain

被引:59
作者
Kobayashi, Hideo
Kitamura, Takuya
Sekiguchi, Miho
Homma, Miwako K.
Kabuyama, Yukihito
Konno, Shin-ichi
Kikuchi, Shin-ichi
Homma, Yoshimi [1 ]
机构
[1] Fukushima Med Univ, Sch Med, Dept Biomol Sci, Fukushima 960, Japan
[2] Fukushima Med Univ, Sch Med, Dept Orthopaed Surg & Biomol Sci, Fukushima, Japan
关键词
neuropathic pain; ephrin; Eph; synaptic plasticity; NMDA receptor; RNA interference; RECEPTOR NR2B SUBUNIT; GENE; EXPRESSION; SIRNA;
D O I
10.1097/BRS.0b013e318074d46a
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Study Design. We investigated involvement of EphB/ephrinB system in neuropathic pain. Objective. Using immunoblotting, immunohistochemistry, and RNA interference techniques, we examined the expression levels of EphB receptors and ephrinB ligands in neuropathic pain. We also explored the effect of ephrinB siRNA for neuropathic pain. Summary of Background Data. It has been reported that EphB2 regulates the development of synaptic plasticity in the hippocampus by interacting with N-methyl-D-aspartate (NMDA) receptors. In acute pain models, it has been clear that EphB1/ephrinB2 interactions via the NMDA receptor modulates synaptic efficacy in spinal cord. Methods. Adult female Sprague-Dawley rats were used in this study. A crush injury model was prepared by crushing the left L5 spinal nerve distal to dorsal root ganglions (DRG) under deep anesthesia. The sham operation was subjected as control. Expression of ephrinB2 and EphB1 were examined by immunoblotting and immunohistochemical analyses with anti-EphB and anti-ephrinB antibodies. To assess involvement of ephrinB in neuropathic pain, we examined the effect of small interference RNA (siRNA) on mechanical allodynia. Results. Among EphB and ephrinB isoforms tested, ephrinB2 and EphB1 were predominant in DRG and spinal cord. Results showed that the expression of ephrinB2 was enhanced in neurons in DRG and spinal cord by the injury in a time-dependent manner. EphB1 was expressed in neurons of spinal cord. Administration of ephrinB2 siRNA reduced the expression of ephrinB2 and mechanical allodynia. Conclusion. Expression of ephrinB2 is enhanced by nerve injury in neurons in DRG and spinal cord, while its receptor EphB1 is expressed in spinal cord. These results suggest that induction of ephrinB2 might activate EphB1/ephrinB2 signaling pathway to regulate synaptic plasticity and reorganization, and that ephrinB2 siRNA could be a potential therapeutic agent for neuropathic pain.
引用
收藏
页码:1592 / 1598
页数:7
相关论文
共 16 条
[1]   Fyn kinase-mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain [J].
Abe, T ;
Matsumura, S ;
Katano, T ;
Mabuchi, T ;
Takagi, K ;
Xu, L ;
Yamamoto, A ;
Hattori, K ;
Yagi, T ;
Watanabe, M ;
Nakazawa, T ;
Yamamoto, T ;
Mishina, M ;
Nakai, Y ;
Ito, S .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2005, 22 (06) :1445-1454
[2]   EphB receptors and ephrin-B ligands regulate spinal sensory connectivity and modulate pain processing [J].
Battaglia, AA ;
Sehayek, K ;
Grist, J ;
McMahon, SB ;
Gavazzi, I .
NATURE NEUROSCIENCE, 2003, 6 (04) :339-340
[3]   Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs [J].
Bruno, V ;
Battaglia, G ;
Copani, A ;
D'Onofrio, M ;
Di Iorio, P ;
De Blasi, A ;
Melchiorri, D ;
Flor, PJ ;
Nicoletti, F .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (09) :1013-1033
[4]   The ephrins and Eph receptors in angiogenesis [J].
Cheng, N ;
Brantley, DM ;
Chen, J .
CYTOKINE & GROWTH FACTOR REVIEWS, 2002, 13 (01) :75-85
[5]   EphB receptors interact with NMDA receptors and regulate excitatory synapse formation [J].
Dalva, MB ;
Takasu, MA ;
Lin, MZ ;
Shamah, SM ;
Hu, L ;
Gale, NW ;
Greenberg, ME .
CELL, 2000, 103 (06) :945-956
[6]   Sodium channels and mechanisms of neuropathic pain [J].
Devor, M .
JOURNAL OF PAIN, 2006, 7 (01) :S3-S12
[7]   siRNA relieves chronic neuropathic pain [J].
Dorn, G ;
Patel, S ;
Wotherspoon, G ;
Hemmings-Mieszczak, M ;
Barclay, J ;
Natt, FJC ;
Martin, P ;
Bevan, S ;
Fox, A ;
Ganju, P ;
Wishart, W ;
Hall, J .
NUCLEIC ACIDS RESEARCH, 2004, 32 (05) :e49
[8]   Eph receptors and ephrins [J].
Himanen, JP ;
Nikolov, DB .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2003, 35 (02) :130-134
[9]   Ephrin signaling in axon guidance [J].
Huot, J .
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2004, 28 (05) :813-818
[10]   Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs [J].
Soutschek, J ;
Akinc, A ;
Bramlage, B ;
Charisse, K ;
Constien, R ;
Donoghue, M ;
Elbashir, S ;
Geick, A ;
Hadwiger, P ;
Harborth, J ;
John, M ;
Kesavan, V ;
Lavine, G ;
Pandey, RK ;
Racie, T ;
Rajeev, KG ;
Röhl, I ;
Toudjarska, I ;
Wang, G ;
Wuschko, S ;
Bumcrot, D ;
Koteliansky, V ;
Limmer, S ;
Manoharan, M ;
Vornlocher, HP .
NATURE, 2004, 432 (7014) :173-178