Zeta-function regularization, the multiplicative anomaly and the Wodzicki residue

被引:84
作者
Elizalde, E
Vanzo, L
Zerbini, S
机构
[1] CSIC, IEEC, Unitat Recerca, ES-08034 Barcelona, Spain
[2] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
[3] Univ Barcelona, Fac Fis, IFAE, E-08028 Barcelona, Spain
[4] Univ Trento, Dipartimento Fis, Trent, Italy
[5] Ist Nazl Fis Nucl, Grp Collegato Trento, Trent, Italy
关键词
D O I
10.1007/s002200050371
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The multiplicative anomaly associated with the zeta-function regularized determinant is computed for the Laplace-type operators L-1 = -Delta+V-1 and L-2 = -Delta+V-2, with V-1, V-2 constant, in a D-dimensional compact smooth manifold M-D, making use of several results due to Wodzicki and by direct calculations in some explicit examples. It is found that the multiplicative anomaly is vanishing for D odd and for D = 2, An application to the one-loop effective potential of the O(2) self-interacting scalar model is outlined.
引用
收藏
页码:613 / 630
页数:18
相关论文
共 28 条
[1]  
ACKERMANN T, 1995, HEPTH9503152
[2]  
ACKERMANN T, 1995, FUNCTAN9506006
[3]   PHASE-STRUCTURE AND THE EFFECTIVE POTENTIAL AT FIXED CHARGE [J].
BENSON, KM ;
BERNSTEIN, J ;
DODELSON, S .
PHYSICAL REVIEW D, 1991, 44 (08) :2480-2497
[4]   Quantum fields and extended objects in space-times with constant curvature spatial section [J].
Bytsenko, AA ;
Cognola, G ;
Vanzo, L ;
Zerbini, S .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 266 (1-2) :1-126
[5]   The spectral action principle [J].
Chamseddine, AH ;
Connes, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (03) :731-750
[6]  
CHAMSEDDINE AH, HEPTH9606056
[7]   SUM-RULES FOR SPECTRAL DENSITIES OF DIFFERENTIAL-OPERATORS AND GENERALIZED HEAT KERNEL-EXPANSION [J].
COGNOLA, G ;
VANZO, L ;
ZERBINI, S .
PHYSICS LETTERS B, 1989, 223 (3-4) :416-420
[8]   THE ACTION FUNCTIONAL IN NON-COMMUTATIVE GEOMETRY [J].
CONNES, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 117 (04) :673-683
[9]   Gravity coupled with matter and the foundation of non-commutative geometry [J].
Connes, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (01) :155-176
[10]  
Connes A., 1991, Nuclear Physics B, Proceedings Supplements, V18B, P29, DOI 10.1016/0920-5632(91)90120-4