Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9

被引:647
作者
Paquet, Dominik [1 ]
Kwart, Dylan [1 ]
Chen, Antonia [1 ]
Sproul, Andrew [2 ,5 ,6 ]
Jacob, Samson [2 ]
Teo, Shaun [1 ]
Olsen, Kimberly Moore [1 ]
Gregg, Andrew [1 ,3 ,4 ]
Noggle, Scott [2 ]
Tessier-Lavigne, Marc [1 ]
机构
[1] Rockefeller Univ, Lab Brain Dev & Repair, 1230 York Ave, New York, NY 10065 USA
[2] New York Stem Cell Fdn Res Inst, New York, NY 10032 USA
[3] Rockefeller Univ, Weill Cornell Grad Sch Med Sci, 1300 York Ave, New York, NY 10065 USA
[4] Mem Sloan Kettering Canc Ctr, Triinst MD PhD Program, 1300 York Ave, New York, NY 10065 USA
[5] Columbia Univ, Dept Pathol & Cell Biol, Med Ctr, 630 West 168th St, New York, NY 10032 USA
[6] Columbia Univ, Taub Inst Res Alzheimers Dis & Aging Brain, Med Ctr, 630 West 168th St, New York, NY 10032 USA
基金
美国国家卫生研究院;
关键词
FAMILIAL ALZHEIMERS-DISEASE; ONE-STEP GENERATION; GENE CONVERSION; HIGH-FREQUENCY; GENOME; CRISPR-CAS9; NUCLEASES; MICE; MODELS; REPAIR;
D O I
10.1038/nature17664
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells(1,2). CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels)(2). DSBs may also be repaired by homology-directed repair (HDR)(1,2) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations(3). Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient(3-8) and can be corrupted by additional indels(9), preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono-and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Casblocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in amyloid precursor protein (APP(Swe))(10) and presenilin 1 (PSEN1M146V)(11) and derived cortical neurons, which displayed genotype-dependent disease-associated phenotypes. Our findings enable efficient introduction of specific sequence changes with CRISPR/Cas9, facilitating study of human disease.
引用
收藏
页码:125 / +
页数:18
相关论文
共 50 条
[1]   Donor DNA Utilization During Gene Targeting with Zinc-Finger Nucleases [J].
Beumer, Kelly J. ;
Trautman, Jonathan K. ;
Mukherjee, Kusumika ;
Carroll, Dana .
G3-GENES GENOMES GENETICS, 2013, 3 (04) :657-664
[2]   Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems [J].
Bialk, Pawel ;
Rivera-Torres, Natalia ;
Strouse, Bryan ;
Kmiec, Eric B. .
PLOS ONE, 2015, 10 (06)
[3]  
Blankenberg Daniel, 2010, Curr Protoc Mol Biol, VChapter 19, DOI 10.1002/0471142727.mb1910s89
[4]   Manipulation of FASTQ data with Galaxy [J].
Blankenberg, Daniel ;
Gordon, Assaf ;
Von Kuster, Gregory ;
Coraor, Nathan ;
Taylor, James ;
Nekrutenko, Anton .
BIOINFORMATICS, 2010, 26 (14) :1783-1785
[5]   Characterization of Genomic Deletion Efficiency Mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 Nuclease System in Mammalian Cells [J].
Canver, Matthew C. ;
Bauer, Daniel E. ;
Dass, Abhishek ;
Yien, Yvette Y. ;
Chung, Jacky ;
Masuda, Takeshi ;
Maeda, Takahiro ;
Paw, Barry H. ;
Orkin, Stuart H. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (31) :21312-21324
[6]   THE STRUCTURE OF THE PRESENILIN-1 (S182) GENE AND IDENTIFICATION OF 6 NOVEL MUTATIONS IN EARLY-ONSET AD FAMILIES [J].
CLARK, RF ;
HUTTON, M ;
FULDNER, RA ;
FROELICH, S ;
KARRAN, E ;
TALBOT, C ;
CROOK, R ;
LENDON, C ;
PRIHAR, G ;
HE, C ;
KORENBLAT, K ;
MARTINEZ, A ;
WRAGG, M ;
BUSFIELD, F ;
BEHRENS, MI ;
MYERS, A ;
NORTON, J ;
MORRIS, J ;
MEHTA, N ;
PEARSON, C ;
LINCOLN, S ;
BAKER, M ;
DUFF, K ;
ZEHR, C ;
PEREZTUR, J ;
HOULDEN, H ;
RUIZ, A ;
OSSA, J ;
LOPERA, F ;
ARCOS, M ;
MADRIGAL, L ;
COLLINGE, J ;
HUMPHREYS, C ;
ASHWORTH, A ;
SARNER, S ;
FOX, N ;
HARVEY, R ;
KENNEDY, A ;
ROQUES, P ;
CLINE, RT ;
PHILLIPS, CA ;
VENTER, JC ;
FORSELL, L ;
AXELMAN, K ;
LILIUS, L ;
JOHNSTON, J ;
COWBURN, R ;
VIITANEN, M ;
WINBLAD, B ;
KOSIK, K .
NATURE GENETICS, 1995, 11 (02) :219-222
[7]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[8]  
Cowan CA, 2004, NEW ENGL J MED, V350, P1353, DOI 10.1056/NEJMsr040330
[9]   COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites [J].
Cradick, Thomas J. ;
Qiu, Peng ;
Lee, Ciaran M. ;
Fine, Eli J. ;
Bao, Gang .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2014, 3 :e214
[10]   Inducible in vivo genome editing with CRISPR-Cas9 [J].
Dow, Lukas E. ;
Fisher, Jonathan ;
O'Rourke, Kevin P. ;
Muley, Ashlesha ;
Kastenhuber, Edward R. ;
Livshits, Geulah ;
Tschaharganeh, Darjus F. ;
Socci, Nicholas D. ;
Lowe, Scott W. .
NATURE BIOTECHNOLOGY, 2015, 33 (04) :390-U98