Numerically invariant signature curves

被引:75
作者
Boutin, M [1 ]
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
关键词
curvature; torsion; object recognition; differential invariant; joint invariant; signature curve; Euclidean group; equi-affine group; numerical approximation;
D O I
10.1023/A:1008139427340
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Corrected versions of the numerically invariant expressions for the affine and Euclidean signature of a planar curve introduced by Calabi et al. in (Int. J. Comput. Vision, 26: 107-135, 1998) are presented. The new formulas are valid for fine but otherwise arbitrary partitions of the curve. We also give numerically invariant expressions for the four differential invariants parameterizing the three dimensional version of the Euclidean signature curve, namely the curvature, the torsion and their derivatives with respect to arc length.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 5 条
[1]   Differential and numerically invariant signature curves applied to object recognition [J].
Calabi, E ;
Olver, PJ ;
Shakiban, C ;
Tannenbaum, A ;
Haker, S .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 26 (02) :107-135
[2]  
Cartan E, 1935, Exposes de Geometrie, V5
[3]  
Do Carmo Manfredo P, 2016, Differential geometry of curves & surfaces, Vsecond
[4]  
EVES H, 1965, SURVEY GEOMETRY, V2
[5]  
FRIEDMAN M, 1993, FUNDAMENTALS COMPUTE