Attenuated total reflection IR spectroscopy as a tool to investigate the onentation and tertiary structure changes in fusion proteins

被引:30
作者
Martin, I [1 ]
Goormaghtigh, E [1 ]
Ruysschaert, JM [1 ]
机构
[1] Free Univ Brussels, Struct & Funct Biol Membranes, Ctr Struct Biol & Bioinformat, B-1050 Brussels, Belgium
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2003年 / 1614卷 / 01期
关键词
attenuated total reflection; IR spectroscopy; fusion peptide orientation; hydrogen/deuterium exchange; dichroic spectra;
D O I
10.1016/S0005-2736(03)00167-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Membrane fusion proceeds via a merging of two lipid bilayers and a redistribution of aqueous contents and bilayer components. it involves transition states in which the phospholipids are not arranged in bilayers and in which the monolayers are highly curved. Such transition states are energetically unfavourable since biological membranes are submitted to strong repulsive hydration electrostatic and steric barriers. Viral membrane proteins can help to overcome these barriers. Viral proteins involved in membrane fusion are membrane associated and the presence of lipids restricts drastically the potential of methods (RMN, X-ray crystallography) that have been used successfully to determine the tertiary structure of soluble proteins. We describe here how IR spectroscopy allows to solve some of the problems related to the lipid environment. The principles of the method, the experimental setup and the preparation of the samples are briefly described. A few examples illustrate how attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy can be used to gain information on the orientation and the accessibility to the water phase of the fusogenic domain of viral proteins. Recent developments suggest that the method could also be used to detect changes located in the membrane domains and to identify intermediate structural states involved in the fusion process. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 89 条
[1]  
[Anonymous], PROTEIN SOLVENT INTE
[2]   Structural perspectives of phospholamban, a helical transmembrane pentamer [J].
Arkin, IT ;
Adams, PD ;
Brunger, AT ;
Smith, SO ;
Engelman, DM .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1997, 26 :157-179
[3]   STRUCTURAL ORGANIZATION OF THE PENTAMERIC TRANSMEMBRANE ALPHA-HELICES OF PHOSPHOLAMBAN, A CARDIAC ION-CHANNEL [J].
ARKIN, IT ;
ADAMS, PD ;
MACKENZIE, KR ;
LEMMON, MA ;
BRUNGER, AT ;
ENGELMAN, DM .
EMBO JOURNAL, 1994, 13 (20) :4757-4764
[4]   Towards membrane protein design: PH-sensitive topology of histidine-containing polypeptides [J].
Bechinger, B .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 263 (05) :768-775
[5]   Membrane helix orientation from linear dichroism of infrared attenuated total reflection spectra. [J].
Bechinger ;
Ruysschaert, JM ;
Goormaghtigh, E .
BIOPHYSICAL JOURNAL, 1999, 76 (01) :A353-A353
[6]   Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease [J].
Berger, EA ;
Murphy, PM ;
Farber, JM .
ANNUAL REVIEW OF IMMUNOLOGY, 1999, 17 :657-700
[7]   PROTEOLYTIC PROCESSING OF A PROTEIN INVOLVED IN SPERM EGG FUSION CORRELATES WITH ACQUISITION OF FERTILIZATION COMPETENCE [J].
BLOBEL, CP ;
MYLES, DG ;
PRIMAKOFF, P ;
WHITE, JM .
JOURNAL OF CELL BIOLOGY, 1990, 111 (01) :69-78
[8]   A POTENTIAL FUSION PEPTIDE AND AN INTEGRIN LIGAND DOMAIN IN A PROTEIN ACTIVE IN SPERM-EGG FUSION [J].
BLOBEL, CP ;
WOLFSBERG, TG ;
TURCK, CW ;
MYLES, DG ;
PRIMAKOFF, P ;
WHITE, JM .
NATURE, 1992, 356 (6366) :248-252
[9]   IDENTIFICATION OF THE FUSION PEPTIDE OF PRIMATE IMMUNODEFICIENCY VIRUSES [J].
BOSCH, ML ;
EARL, PL ;
FARGNOLI, K ;
PICCIAFUOCO, S ;
GIOMBINI, F ;
WONGSTAAL, F ;
FRANCHINI, G .
SCIENCE, 1989, 244 (4905) :694-697
[10]   Oblique membrane insertion of viral fusion peptide probed by neutron diffractions [J].
Bradshaw, JP ;
Darkes, MJM ;
Harroun, TA ;
Katsaras, J ;
Epand, RM .
BIOCHEMISTRY, 2000, 39 (22) :6581-6585