Using principal component analysis to estimate a high dimensional factor model with high-frequency data

被引:109
作者
Ait-Sahalia, Yacine [1 ,2 ]
Xiu, Dacheng [3 ]
机构
[1] Princeton Univ, Dept Econ, 26 Prospect Ave, Princeton, NJ 08540 USA
[2] NBER, 26 Prospect Ave, Princeton, NJ 08540 USA
[3] Univ Chicago, Booth Sch Business, 5807 S Woodlawn Ave, Chicago, IL 60637 USA
关键词
High-dimensional data; High-frequency data; Latent factor model; Principal components; Portfolio optimization; APPROXIMATE FACTOR MODELS; DYNAMIC-FACTOR MODEL; COVARIANCE-MATRIX ESTIMATION; PORTFOLIO OPTIMIZATION; ITO PROCESSES; NUMBER; RISK; CONSTRAINTS; SPARSE; IDENTIFICATION;
D O I
10.1016/j.jeconom.2017.08.015
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper constructs an estimator for the number of common factors in a setting where both the sampling frequency and the number of variables increase. Empirically, we document that the covariance matrix of a large portfolio of US equities is well represented by a low rank common structure with sparse residual matrix. When employed for out-of-sample portfolio allocation, the proposed estimator largely outperforms the sample covariance estimator. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:384 / 399
页数:16
相关论文
共 75 条
[1]   Eigenvalue Ratio Test for the Number of Factors [J].
Ahn, Seung C. ;
Horenstein, Alex R. .
ECONOMETRICA, 2013, 81 (03) :1203-1227
[2]   Variable selection for portfolio choice [J].
Aït-Sahalia, Y ;
Brandt, MW .
JOURNAL OF FINANCE, 2001, 56 (04) :1297-1351
[3]  
Ait-Sahalia Y., 2014, TECH REP
[4]  
Ait-Sahalia Y., 2015, PRINCIPAL COMPONENT
[5]   High-Frequency Covariance Estimates With Noisy and Asynchronous Financial Data [J].
Ait-Sahalia, Yacine ;
Fan, Jianqing ;
Xlu, Dacheng .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (492) :1504-1517
[6]   Improved penalization for determining the number of factors in approximate factor models [J].
Alessi, Lucia ;
Barigozzi, Matteo ;
Capasso, Marco .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (23-24) :1806-1813
[7]   Consistent estimation of the number of dynamic factors in a large N and T panel [J].
Amengual, Dante ;
Watson, Mark W. .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2007, 25 (01) :91-96
[8]  
Anderson T.W., 1958, An introduction to multivariate statistical analysis, V2
[9]  
[Anonymous], 2013, Matrix Analysis
[10]  
[Anonymous], ECONOMETRIC REV