AtDEK1 is essential for specification of embryonic epidermal cell fate

被引:83
作者
Johnson, KL [1 ]
Degnan, KA [1 ]
Walker, JR [1 ]
Ingram, GC [1 ]
机构
[1] Univ Edinburgh, IMPS, Edinburgh EH9 3JR, Midlothian, Scotland
关键词
epidermal specification; embryogenesis; DEK1; cell fate;
D O I
10.1111/j.1365-313X.2005.02514.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The specification of epidermal (L1) identity occurs early during plant embryogenesis. Here we show that, in Arabidopsis, AtDEK1 encodes a key component of the embryonic L1 cell-layer specification pathway. Loss of AtDEK1 function leads to early embryo lethality characterized by a severe loss of cell organization in the embryo proper and abnormal cell divisions within the suspensor. Markers for L1 identity, ACR4 and ATML1, are not expressed in homozygous mutant embryos. In order to clarify the function of AtDEK1 further, an RNAi knockdown approach was used. This allowed embryos to partially complete embryogenesis before losing AtDEK1 activity. Resulting seedlings showed a specific loss of epidermal cell identity within large portions of the cotyledons. In addition, meristem structure and function was systematically either reduced or entirely lost. AtDEK1 expression is not restricted to the L1 epidermal cell layer at any stage in development. This is consistent with AtDEK1 playing an upstream role in the continuous generation or interpretation of positional information required for epidermal specification. Our results not only identify a specific role for AtDEK1 during embryogenesis, but underline the potential key importance of L1 specification at the globular stage for subsequent progression through embryogenesis.
引用
收藏
页码:114 / 127
页数:14
相关论文
共 33 条
[1]   Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis [J].
Abe, M ;
Katsumata, H ;
Komeda, Y ;
Takahashi, T .
DEVELOPMENT, 2003, 130 (04) :635-643
[2]   Phytocalpain controls the proliferation and differentiation fates of cells in plant organ development [J].
Ahn, JW ;
Kim, M ;
Lim, JH ;
Kim, GT ;
Pai, HS .
PLANT JOURNAL, 2004, 38 (06) :969-981
[3]  
Becraft PW, 2000, DEVELOPMENT, V127, P4039
[4]  
Becraft PW, 2002, DEVELOPMENT, V129, P5217
[5]   CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation [J].
Becraft, PW ;
Stinard, PS ;
McCarty, DR .
SCIENCE, 1996, 273 (5280) :1406-1409
[6]   The maize CRINKLY4 receptor kinase controls a cell-autonomous differentiation response [J].
Becraft, PW ;
Kang, SH ;
Suh, SG .
PLANT PHYSIOLOGY, 2001, 127 (02) :486-496
[7]   Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains [J].
Boisnard-Lorig, C ;
Colon-Carmona, A ;
Bauch, W ;
Hodge, S ;
Doerner, P ;
Bancharel, E ;
Dumas, C ;
Haseloff, J ;
Berger, F .
PLANT CELL, 2001, 13 (03) :495-509
[8]   Dependence of stem cell fate in Arabidopsis an a feedback loop regulated by CLV3 activity [J].
Brand, U ;
Fletcher, JC ;
Hobe, M ;
Meyerowitz, EM ;
Simon, R .
SCIENCE, 2000, 289 (5479) :617-619
[9]   ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis [J].
Chen, JG ;
Ullah, H ;
Young, JC ;
Sussman, MR ;
Jones, AM .
GENES & DEVELOPMENT, 2001, 15 (07) :902-911
[10]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743