HKT1 mediates sodium uniport in roots.: Pitfalls in the expression of HKT1 in yeast

被引:116
作者
Haro, R [1 ]
Bañuelos, MA [1 ]
Senn, MAE [1 ]
Barrero-Gil, J [1 ]
Rodríguez-Navarro, A [1 ]
机构
[1] Univ Politecn Madrid, Dept Biotechnol, E-28040 Madrid, Spain
关键词
D O I
10.1104/pp.105.067553
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The function of HKT1 in roots is controversial. We tackled this controversy by studying Na+ uptake in barley (Hordeum vulgare) roots, cloning the HvHKT1 gene, and expressing the HvHKT1 cDNA in yeast (Saccharomyces cerevisiae) cells. High-affinity Na+ uptake was not detected in plants growing at high K+ but appeared soon after exposing the plants to a K+-free medium. It was a uniport, insensitive to external K+ at the beginning of K+ starvation and inhibitable by K+ several hours later. The expression of HvHKT1 in yeast was Na+ (or K+) uniport, Na+ -K+ symport, or a mix of both, depending on the construct from which the transporter was expressed. The Na+ uniport function was insensitive to external K+ and mimicked the Na+ uptake carried out by the roots at the beginning of K+ starvation. The K+ uniport function only took place in yeast cells that were completely K+ starved and disappeared when internal K+ increased, which makes it unlikely that HvHKT1 mediates K+ uptake in roots. Mutation of the first in-frame AUG codon of HvHKT1 to CUC changed the uniport function into symport. The expression of the symport from either mutants or constructs keeping the first in-frame AUG took place only in K+ -starved cells, while the uniport was expressed in all conditions. We discuss here that the symport occurs only in heterologous expression. It is most likely related to the K+ inhibitable Na+ uptake process of roots that heterologous systems fail to reproduce.
引用
收藏
页码:1495 / 1506
页数:12
相关论文
共 50 条
[1]   FUNCTIONAL EXPRESSION OF A PROBABLE ARABIDOPSIS-THALIANA POTASSIUM CHANNEL IN SACCHAROMYCES-CEREVISIAE [J].
ANDERSON, JA ;
HUPRIKAR, SS ;
KOCHIAN, LV ;
LUCAS, WJ ;
GABER, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3736-3740
[2]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[3]   Inventory and functional characterization of the HAK potassium transporters of rice [J].
Bañuelos, MA ;
Garciadeblas, B ;
Cubero, B ;
Rodríguez-Navarro, A .
PLANT PHYSIOLOGY, 2002, 130 (02) :784-795
[4]   Novel P-type ATPases mediate high-affinity potassium or sodium uptake in fungi [J].
Benito, B ;
Garciadeblás, B ;
Schreier, P ;
Rodríguez-Navarro, A .
EUKARYOTIC CELL, 2004, 3 (02) :359-368
[5]   Molecular cloning and characterization of a sodium-pump ATPase of the moss Physcomitrella patens [J].
Benito, B ;
Rodríguez-Navarro, A .
PLANT JOURNAL, 2003, 36 (03) :382-389
[6]   The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis [J].
Bennetzen, JL ;
Ma, JX .
CURRENT OPINION IN PLANT BIOLOGY, 2003, 6 (02) :128-133
[7]   Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance [J].
Berthomieu, P ;
Conéjéro, G ;
Nublat, A ;
Brackenbury, WJ ;
Lambert, C ;
Savio, C ;
Uozumi, N ;
Oiki, S ;
Yamada, K ;
Cellier, F ;
Gosti, F ;
Simonneau, T ;
Essah, PA ;
Tester, M ;
Véry, AA ;
Sentenac, H ;
Casse, F .
EMBO JOURNAL, 2003, 22 (09) :2004-2014
[8]   ROLE OF ACTIVE POTASSIUM-TRANSPORT IN THE REGULATION OF CYTOPLASMIC PH BY NONANIMAL CELLS [J].
BLATT, MR ;
SLAYMAN, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (09) :2737-2741
[9]   Sequence and structure-based prediction of eukaryotic protein phosphorylation sites [J].
Blom, N ;
Gammeltoft, S ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 294 (05) :1351-1362
[10]   A SERIES OF YEAST/ESCHERICHIA COLI LAMBDA EXPRESSION VECTORS DESIGNED FOR DIRECTIONAL CLONING OF CDNAS AND CRE/LOX-MEDIATED PLASMID EXCISION [J].
BRUNELLI, JP ;
PALL, ML .
YEAST, 1993, 9 (12) :1309-1318