The quantum canonical ensemble

被引:38
作者
Brody, DC
Hughston, LP
机构
[1] DAMTP, Cambridge CB3 9EW, England
[2] Univ Cambridge Churchhill Coll, Cambridge CB3 0DS, England
[3] Merrill Lynch Int, London EC2Y 9LY, England
[4] Univ London Kings Coll, London WC2R 2LS, England
关键词
D O I
10.1063/1.532661
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phase space Gamma of quantum mechanics can be viewed as the complex projective space CPn endowed with a Kahlerian structure given by the Fubini-Study metric and an associated symplectic form. We can then interpret the Schrodinger equation as generating a Hamiltonian dynamics on Gamma. Based upon the geometric structure of the quantum phase space we introduce the corresponding natural microcanonical and canonical ensembles. The resulting density matrix for the canonical Gamma-ensemble differs from the density matrix of the conventional approach. As an illustration, the results are applied to the case of a spin one-half particle in a heat bath with an applied magnetic field. (C) 1998 American Institute of Physics. [S0022-2488(98)00212-6].
引用
收藏
页码:6502 / 6508
页数:7
相关论文
共 11 条
[1]   GEOMETRY OF QUANTUM EVOLUTION [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1697-1700
[2]  
ASHTEKAR A, 1998, EINSTEINS PATH
[3]   UNIFIED DYNAMICS FOR MICROSCOPIC AND MACROSCOPIC SYSTEMS [J].
GHIRARDI, GC ;
RIMINI, A ;
WEBER, T .
PHYSICAL REVIEW D, 1986, 34 (02) :470-491
[4]  
Gibbons G. W., 1992, Journal of Geometry and Physics, V8, P147, DOI 10.1016/0393-0440(92)90046-4
[5]  
GISIN N, 1989, HELV PHYS ACTA, V62, P363
[6]   Geometry of stochastic state vector reduction [J].
Hughston, LP .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1947) :953-979
[7]  
HUGSTON LP, 1995, TWISTOR THEORY
[8]   GEOMETRIZATION OF QUANTUM-MECHANICS [J].
KIBBLE, TWB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (02) :189-201
[9]   PRIMARY STATE DIFFUSION [J].
PERCIVAL, IC .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1994, 447 (1929) :189-209
[10]   TESTING QUANTUM-MECHANICS [J].
WEINBERG, S .
ANNALS OF PHYSICS, 1989, 194 (02) :336-386