Ultralayered Co3O4 for High-Performance Supercapacitor Applications

被引:967
作者
Meher, Sumanta Kumar [1 ]
Rao, G. Ranga [1 ]
机构
[1] Indian Inst Technol, Dept Chem, Madras 600036, Tamil Nadu, India
关键词
STORAGE PROPERTIES; ANODIC DEPOSITION; COBALT; ENERGY; CAPACITANCE; BEHAVIOR; SUPERSTRUCTURES; NANOSTRUCTURES; GENERATION; ELECTRODES;
D O I
10.1021/jp201200e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultralayered Co3O4 structures with high porosity have been synthesized by a facile homogeneous precipitation process under hydrothermal conditions. The superstructures consist of well-arranged micrometer length rectangular 2D flakes with high specific surface area, pore volume, and uniform pore size distribution. The electrochemical measurements demonstrate that charge storage occurs in ultralayered Co3O4 due to reversible redox reactions. The charge discharge study shows that the material is capable of delivering very high specific capacitance of 548 F g(-1) at a current density of 8 A g(-1) and retains 66% of capacitance at 32 A g(-1). The charge discharge stability measurements show excellent specific capacitance retention capability, ca. 98.5% after 2000 continuous charge discharge cycles at high current density of 16 A g(-1). The exceptional cyclic, structural, and electrochemical stability at higher current rate with similar to 100% Coulombic efficiency, and very low ESR value from impedance measurements promise good utility value of ultralayered Co3O4 material in fabricating a wide range of high-performance electrochemical supercapacitors.
引用
收藏
页码:15646 / 15654
页数:9
相关论文
共 58 条
[1]  
An KH, 2001, ADV MATER, V13, P497, DOI 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.3.CO
[2]  
2-8
[3]   Size effects and nanostructured materials for energy applications [J].
Balaya, Palani .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (06) :645-654
[4]  
Barreca D, 2001, CHEM MATER, V13, P588, DOI [10.1021/cm001041x, 10.1021/cm00104lx]
[5]  
BEHL WK, 1971, J ELECTROANAL CHEM, V31, P63, DOI 10.1016/S0022-0728(71)80043-8
[6]   Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance [J].
Cao, L ;
Lu, M ;
Li, HL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A871-A875
[7]   Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions [J].
Casella, IG ;
Gatta, M .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 534 (01) :31-38
[8]   Oxygen evolution on electrodeposited cobalt oxides [J].
Castro, EB ;
Gervasi, CA ;
Vilche, JR .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1998, 28 (08) :835-841
[9]   Building Hematite Nanostructures by Oriented Attachment [J].
Chen, Jun Song ;
Zhu, Ting ;
Li, Chang Ming ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (03) :650-653
[10]   Mesocrystals:: Inorganic superstructures made by highly parallel crystallization and controlled alignment [J].
Cölfen, H ;
Antonietti, M .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (35) :5576-5591