K channel subconductance levels result from heteromeric pore conformations

被引:51
作者
Chapman, ML [1 ]
VanDongen, AMJ [1 ]
机构
[1] Duke Univ, Ctr Med, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA
关键词
D O I
10.1085/jgp.200509253
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Voltage-gated K channels assemble from four identical subunits symmetrically arranged around a central permeation pathway. Each subunit harbors a voltage-sensing domain. The sigmoidal nature of the activation kinetics suggests that multiple sensors need to undergo a conformational change before the channel can open. Following activation, individual K channels alternate stochastically between two main permeation states, open and closed. This binary character of single channel behavior suggests the presence of a structure in the permeation pathway that can exist in only two conformations. However, single channel analysis of drk1 (K(v)2.1) K channels demonstrated the existence of four additional, intermediate conductance levels. These short-lived subconductance levels are visited when the channel gate moves between the closed and fully open state. We have proposed that these sublevels arise from transient heteromeric pore conformations, in which some, but not all, subunits are in the "open" state. A minimal model based on this hypothesis relates specific subconductance states with the number of activated subunits (Chapman et al., 1997). To stringently test this hypothesis, we constructed a tandem dimer that links two K channel subunits with different activation thresholds. Activation of this dimer by strong depolarizations resulted in the characteristic binary open-close behavior. However, depolarizations to membrane potentials in between the activation thresholds of the two parents elicited highly unusual single channel gating, displaying frequent visits to two subconductance levels. The voltage dependence and kinetics of the small and large sublevels associate them with the activation of one and two subunits, respectively. The data therefore support the hypothesis that subconductance levels result from heteromeric pore conformations. In this model, both sensor movement and channel opening have a subunit basis and these processes are allosterically coupled.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 48 条
[1]   A REINTERPRETATION OF MAMMALIAN SODIUM-CHANNEL GATING BASED ON SINGLE CHANNEL RECORDING [J].
ALDRICH, RW ;
COREY, DP ;
STEVENS, CF .
NATURE, 1983, 306 (5942) :436-441
[2]   Integrated allosteric model of voltage gating of HCN channels [J].
Altomare, C ;
Bucchi, A ;
Camatini, E ;
Baruscotti, M ;
Viscomi, C ;
Moroni, A ;
DiFrancesco, D .
JOURNAL OF GENERAL PHYSIOLOGY, 2001, 117 (06) :519-532
[4]   VOLTAGE-DEPENDENT GATING OF IONIC CHANNELS [J].
BEZANILLA, F ;
STEFANI, E .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1994, 23 :819-846
[5]   Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy [J].
Cha, A ;
Snyder, GE ;
Selvin, PR ;
Bezanilla, F .
NATURE, 1999, 402 (6763) :809-813
[6]   Allosteric receptors after 30 years [J].
Changeux, JP ;
Edelstein, SJ .
NEURON, 1998, 21 (05) :959-980
[7]   Activation-dependent subconductance levels in the drk1 K channel suggest a subunit basis for ion permeation and gating [J].
Chapman, ML ;
VanDongen, HMA ;
VanDongen, AMJ .
BIOPHYSICAL JOURNAL, 1997, 72 (02) :708-719
[8]   GYGD pore motifs in neighbouring potassium channel subunits interact to determine ion selectivity [J].
Chapman, ML ;
Krovetz, HS ;
VanDongen, AMJ .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 530 (01) :21-33
[9]   Allosteric gating of a large conductance Ca-activated K+ channel [J].
Cox, DH ;
Cui, J ;
Aldrich, RW .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 110 (03) :257-281
[10]   Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel [J].
del Camino, D ;
Yellen, G .
NEURON, 2001, 32 (04) :649-656