Modeling and prediction of human behavior

被引:332
作者
Pentland, A
Liu, A
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Nissan Cambridge Basic Res, Cambridge, MA 02142 USA
关键词
D O I
10.1162/089976699300016890
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose that many human behaviors can be accurately described as a set of dynamic models (e. g., Kalman filters) sequenced together by a Markov chain. We then use these dynamic Markov models to recognize human behaviors from sensory data and to predict human behaviors over a few seconds time. To test the power of this modeling approach, we report an experiment in which we were able to achieve 95% accuracy at predicting automobile drivers' subsequent actions from their initial preparatory movements.
引用
收藏
页码:229 / 242
页数:14
相关论文
共 19 条
[1]  
Baum L.E., 1972, Inequalities III: Proceedings of the Third Symposium on Inequalities, page, V3, P1
[2]  
BOER E, 1996, IEEE VEH TECH C ATL, P1810
[3]  
BREGLER C, 1997, IEEE C COMP VIS PATT, P568
[4]  
FRIEDMANN M, 1992, P ACM 1992 S INT 3D, P128
[5]  
Friedmann M., 1992, PRESENCE, V1, P139
[6]  
Huang X., 1990, HIDDEN MARKOV MODELS
[7]  
ISARD M, 1996, 1996 EUR C COMP VIS, P343
[8]   MAXIMUM-LIKELIHOOD ESTIMATION FOR MIXTURE MULTIVARIATE STOCHASTIC OBSERVATIONS OF MARKOV-CHAINS [J].
JUANG, BH .
AT&T TECHNICAL JOURNAL, 1985, 64 (06) :1235-1249
[9]  
Kalman R.E., 1961, J. Basic Eng., V83, P95, DOI [10.1115/1.3658902, DOI 10.1115/1.3658902]
[10]  
MEILA M, 1995, 1567 MIT AI LAB