Synthesis and characterization of magnetic FexOy@SBA-15 composites with different morphologies for controlled drug release and targeting

被引:82
作者
Huang, Shanshan [1 ]
Yang, Piaoping [1 ]
Cheng, Ziyong [1 ]
Li, Chunxia [1 ]
Fan, Yong [1 ]
Kong, Deyan [1 ]
Lin, Jun [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
关键词
D O I
10.1021/jp800363s
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnetic functionalization of the ordered mesoporous SBA-15 (SiO2) aggregate blocks and rice grain-like particles were realized by using a sol-gel method, resulting in the formation of FexOy@SBA-15 composite materials. The X-ray diffraction (XRD), N-2 adsorption/desorption, and transmission electron microscopy (TEM) results show that these composites conserved ordered mesoporous structure after the formation of FexOy nanoparticles in the pores and on the outer surface of SBA-15. It was confirmed by the XRD and X-ray photoelectron spectroscopy (XPS) analysis that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites possess superparamagnetic properties at 300 K. The saturation magnetization of these composites increased with the increasing loading amount of gamma-Fe2O3. These composites, which possess high surface area and high pore volume, show magnetic response sufficient for drug targeting in the presence of an external magnetic field. These magnetic composites show sustained release profiles with ibuprofen as the model drug. The rice grain-like FexOy@SBA-15 particles show higher release rate with respect to the FexOy@SBA-15 aggregate blocks.
引用
收藏
页码:7130 / 7137
页数:8
相关论文
共 60 条
[1]  
[Anonymous], DRUG DELIV
[2]   Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications [J].
Arruebo, M ;
Galán, M ;
Navascués, N ;
Téllez, C ;
Marquina, C ;
Ibarra, MR ;
Santamaría, J .
CHEMISTRY OF MATERIALS, 2006, 18 (07) :1911-1919
[3]  
Bateman JE, 1998, ANGEW CHEM INT EDIT, V37, P2683, DOI 10.1002/(SICI)1521-3773(19981016)37:19<2683::AID-ANIE2683>3.0.CO
[4]  
2-Y
[5]   Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications [J].
Berry, CC .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (05) :543-547
[6]   Magnetic modification of the external surfaces in the MCM-41 porous silica: Synthesis, characterization, and functionalization [J].
Bourlinos, AB ;
Simopoulos, A ;
Boukos, N ;
Petridis, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (31) :7432-7437
[7]   Synthesis, characterisation and application of silica-magnetite nanocomposites [J].
Bruce, IJ ;
Taylor, J ;
Todd, M ;
Davies, MJ ;
Borioni, E ;
Sangregorio, C ;
Sen, T .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 284 :145-160
[8]   Synthesis and characterization of polyimide silica hybrid composites [J].
Chen, Y ;
Iroh, JO .
CHEMISTRY OF MATERIALS, 1999, 11 (05) :1218-1222
[9]   DEPENDENCE OF APATITE FORMATION ON SILICA-GEL ON ITS STRUCTURE - EFFECT OF HEAT-TREATMENT [J].
CHO, SB ;
NAKANISHI, K ;
KOKUBO, T ;
SOGA, N ;
OHTSUKI, C ;
NAKAMURA, T ;
KITSUGI, T ;
YAMAMURO, T .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1995, 78 (07) :1769-1774
[10]   Nanocasting:: Using SBA-15 silicas as hard templates to obtain ultrasmall monodispersed γ-Fe2O3 nanoparticles [J].
Delahaye, E. ;
Escax, V. ;
El Hassan, N. ;
Davidson, A. ;
Aquino, R. ;
Dupuis, V. ;
Perzynski, R. ;
Raikher, Y. L. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (51) :26001-26011