Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors

被引:142
作者
Loh, K. J. [1 ]
Lynch, J. P. [1 ,2 ]
Shim, B. S. [3 ]
Kotov, N. A. [3 ]
机构
[1] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
关键词
carbon nanotube composite; electrical impedance spectroscopy; layer-by-layer; nanotechnology; strain sensor;
D O I
10.1177/1045389X07079872
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, carbon nanotubes have been utilized for a variety of applications, including nanoelectronics and various types of sensors. In particular, researchers have sought to take advantage of the superior electrical properties of carbon nanotubes for fabricating novel strain sensors. This article presents a single-walled carbon nanotube (SWNT)-polyelectrolyte (PE) composite thin film strain sensor fabricated with a layer-by-layer (LbL) process. Optimization of bulk SWNT-PE strain sensor properties is achieved by varying various LbL fabrication parameters, followed by characterization of strain-sensing electromechanical responses. A resistor and capacitor (RC)-circuit model is proposed and validated with electrical impedance spectroscopy to fit experimental results and to identify equivalent circuit element parameters sensitive to strain. Experimental results suggest consistent trends between SWNT and PE concentrations to strain sensor sensitivities. Simply by adjusting the weight fraction of SWNT solutions and film thickness, strain sensitivities between 0.1 and 1.8 have been achieved. While SWNT-PE strain sensitivity is lower than some metal-foil strain gauges (similar to 2), the LbL method allows for precise tailoring of the properties (i.e., strain sensitivity, resistivity, among others) of a high-capacity (+/- 10,000 mu mm(-1)) homogeneous multilayer strain sensor.
引用
收藏
页码:747 / 764
页数:18
相关论文
共 52 条
[1]  
Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
[2]  
2-6
[3]   Nanotube composite carbon fibers [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Rantell, T ;
Derbyshire, F ;
Chen, Y ;
Chen, J ;
Haddon, RC .
APPLIED PHYSICS LETTERS, 1999, 75 (09) :1329-1331
[4]  
Barsoukov E, 2005, IMPEDANCE SPECTROSCOPY: THEORY, EXPERIMENT, AND APPLICATIONS, 2ND EDITION, pXII
[5]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[6]   Reinforcement of polymers with carbon nanotubes:: The role of nanotube surface area [J].
Cadek, M ;
Coleman, JN ;
Ryan, KP ;
Nicolosi, V ;
Bister, G ;
Fonseca, A ;
Nagy, JB ;
Szostak, K ;
Béguin, F ;
Blau, WJ .
NANO LETTERS, 2004, 4 (02) :353-356
[7]   Carbon nanotube sensors [J].
Dai, LM .
SMART STRUCTURES AND MATERIALS 2002: ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD), 2002, 4695 :237-244
[8]   BUILDUP OF ULTRATHIN MULTILAYER FILMS BY A SELF-ASSEMBLY PROCESS .3. CONSECUTIVELY ALTERNATING ADSORPTION OF ANIONIC AND CATIONIC POLYELECTROLYTES ON CHARGED SURFACES [J].
DECHER, G ;
HONG, JD ;
SCHMITT, J .
THIN SOLID FILMS, 1992, 210 (1-2) :831-835
[9]   Fuzzy nanoassemblies: Toward layered polymeric multicomposites [J].
Decher, G .
SCIENCE, 1997, 277 (5330) :1232-1237
[10]  
Decher G., 2003, MULTILAYER THIN FILM