Arnoldi versus nonsymmetric Lanczos algorithms for solving matrix eigenvalue problems

被引:7
作者
Cullum, J [1 ]
机构
[1] IBM CORP, THOMAS J WATSON RES CTR, DIV RES, DEPT MATH SCI, YORKTOWN HTS, NY 10598 USA
关键词
matrix eigenvalue problems; Arnoldi methods; Lanczos methods;
D O I
10.1007/BF01731928
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present theoretical and numerical comparisons between Arnoldi and nonsymmetric Lanczos procedures for computing eigenvalues of nonsymmetric matrices. In exact arithmetic we prove that any type of eigenvalue convergence behavior obtained using a nonsymmetric Lanczos procedure may also be obtained using an Arnoldi procedure but on a different matrix and with a different starting vector. In exact arithmetic we derive relationships between these types of procedures and normal matrices which suggest some interesting questions regarding the roles of nonnormality and of the choice of starting vectors in any characterizations of the convergence behavior of these procedures. Then, through a set of numerical experiments on a complex Arnoldi and on a complex nonsymmetric Lanczos procedure, we consider the more practical question of the behavior of these procedures when they are applied to the same matrices.
引用
收藏
页码:470 / 493
页数:24
相关论文
共 32 条
[1]  
BAI ZJ, 1994, MATH COMPUT, V62, P209, DOI 10.1090/S0025-5718-1994-1201066-7
[2]  
BENNANI M, 1994, TRPA9423 CERFACS
[3]  
BRACONNIER T, 1994, TRPA9407 CERFACS
[4]  
BRACONNIER T, 1995, 281 U MANCH MANCH CT
[5]   A BREAKDOWN-FREE LANCZOS TYPE ALGORITHM FOR SOLVING LINEAR-SYSTEMS [J].
BREZINSKI, C ;
ZAGLIA, MR ;
SADOK, H .
NUMERISCHE MATHEMATIK, 1992, 63 (01) :29-38
[6]  
Chaitin-Chatelin F., 1996, Lectures on finite precision computations
[7]  
CHAITINCHATELIN F, 1994, TRPA9418 CERFACS
[8]  
CHAITINCHATELIN F, 1994, TRPA9405 CERFACS
[9]  
CHATELIN F, 1993, TRPA9312 CERFACS
[10]   A GENERALIZED NONSYMMETRIC LANCZOS PROCEDURE [J].
CULLUM, J ;
KERNER, W ;
WILLOUGHBY, R .
COMPUTER PHYSICS COMMUNICATIONS, 1989, 53 (1-3) :19-48