Analysis of Proportional Odds Models With Censoring and Errors-in-Covariates

被引:5
作者
Sinha, Samiran [1 ]
Ma, Yanyuan [2 ,3 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[3] Univ South Carolina, Dept Stat, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Estimating equations; Functional approach; Martingale; Measurement error; Proportional odds model; U-statistics; MAXIMUM-LIKELIHOOD-ESTIMATION; FAILURE TIME REGRESSION; HAZARDS MODEL; TRANSFORMATION MODELS; DENSITY-ESTIMATION; COX REGRESSION; SCORE APPROACH; SELECTION;
D O I
10.1080/01621459.2015.1093943
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a consistent method for estimating both the finite- and infinite-dimensional parameters of the proportional odds model when a covariate is subject to measurement error and time-to-events are subject to right censoring. The proposed method does not rely on the distributional assumption of the true covariate, which is not observed in the data. In addition, the proposed estimator does not require the measurement error to be:normally distributed or to have any other specific distribution, and we do not attempt to assess the error distribution. Instead, we construct martingale-based estimators through inversion, using only the moment properties of the error distribution, estimable from multiple erroneous measurements of the true covariate. The theoretical properties of the estimators are established and the finite sample performance is demonstrated via simulations. We illustrate the usefulness of the method by analyzing a dataset from a clinical study on AIDS. Supplementary materials for this article are available online.
引用
收藏
页码:1301 / 1312
页数:12
相关论文
共 28 条
[1]   Unbiased scores in proportional hazards regression with covariate measurement error [J].
Buzas, JS .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 67 (02) :247-257
[2]  
Carroll J., 2006, MEASUREMENT ERROR NO, V2nd edn, DOI 10.1201/9781420010138
[3]  
Cheng SC, 1995, BIOMETRIKA, V82, P835, DOI 10.1093/biomet/82.4.835
[4]   Linear transformation models for failure time data with covariate measurement error [J].
Cheng, SC ;
Wang, NY .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (454) :706-716
[5]   On the linear transformation model for censored data [J].
Fine, JP ;
Ying, Z ;
Wei, LJ .
BIOMETRIKA, 1998, 85 (04) :980-986
[6]   Measurement error in covariates in the marginal hazards model for multivariate failure time data [J].
Greene, WF ;
Cai, JW .
BIOMETRICS, 2004, 60 (04) :987-996
[7]   Semiparametric estimators of functional measurement error models with unknown error [J].
Hall, Peter ;
Ma, Yanyuan .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 :429-446
[8]   A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter [J].
Hammer, SM ;
Katzenstein, DA ;
Hughes, MD ;
Gundacker, H ;
Schooley, RT ;
Haubrich, RH ;
Henry, WK ;
Lederman, MM ;
Phair, JP ;
Niu, M ;
Hirsch, MS ;
Merigan, TC ;
Blaschke, TF ;
Simpson, D ;
McLaren, C ;
Rooney, J ;
Salgo, M .
NEW ENGLAND JOURNAL OF MEDICINE, 1996, 335 (15) :1081-1090
[9]   Cox regression with covariate measurement error [J].
Hu, CC ;
Lin, DY .
SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (04) :637-655
[10]  
Huang J, 1995, INST MATH S, V27, P129, DOI 10.1214/lnms/1215452217