Discrete physics and the Dirac equation

被引:46
作者
Kauffman, LH [1 ]
Noyes, HP [1 ]
机构
[1] STANFORD UNIV,STANFORD LINEAR ACCELERATOR CTR,STANFORD,CA 94309
基金
美国国家科学基金会;
关键词
discrete physics; choice sequences; Dirac equation; Feynman checkerboard; calculus of finite differences; rational versus complex quantum mechanics;
D O I
10.1016/0375-9601(96)00436-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We rewrite the 1+1 Dirac equation in light cone coordinates in two significant forms, and solve them exactly using the classical calculus of finite differences, The complex form yields ''Feynman's checkerboard'' - a weighted sum over lattice paths. The rational, real form can also be interpreted in terms of bit-strings.
引用
收藏
页码:139 / 146
页数:8
相关论文
共 17 条
[1]  
ETTER T, 1996, P ANPA WEST, V12
[2]  
ETTER T, IN PRESS INT J GEN S
[3]  
FEYNMAN RP, 1965, QUANTUM MECH PATH IN, P34
[4]   FEYNMAN RELATIVISTIC CHESSBOARD AS AN ISING-MODEL [J].
GERSCH, HA .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1981, 20 (07) :491-501
[5]  
GREY E, 1996, P ANPA, V17
[6]   QUANTUM STOCHASTICS - THE PASSAGE FROM A RELATIVISTIC TO A NON-RELATIVISTIC PATH INTEGRAL [J].
JACOBSON, T ;
SCHULMAN, LS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (02) :375-383
[7]   ON THE DERIVATION OF THE ELECTRON PROPAGATOR FROM A RANDOM-WALK [J].
KARMANOV, VA .
PHYSICS LETTERS A, 1993, 174 (5-6) :371-376
[8]  
KARMANOV VA, 1989, COMMUNICATION 0811
[9]  
KAUFFMAN L, 1991, KNOTS PHYSICS
[10]   Discrete physics and the derivation of electromagnetism from the formalism of quantum mechanics [J].
Kauffman, LH ;
Noyes, HP .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1944) :81-95