An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation

被引:581
作者
Werdell, PJ [1 ]
Bailey, SW
机构
[1] NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA
[2] NASA, Goddard Space Flight Ctr, Futuretech Corp, Greenbelt, MD 20771 USA
基金
美国国家航空航天局;
关键词
ocean color; satellite validation; algorithm development; SeaBASS; SeaWiFS; MODIS; bio-optics; remote sensing; water-leaving radiance; chlorophyll;
D O I
10.1016/j.rse.2005.07.001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Global satellite ocean color instruments provide the scientific community a high-resolution means of studying the marine biosphere. Satellite data product validation and algorithm development activities both require the substantial accumulation of high-quality in-situ observations. The NASA Ocean Biology Processing Group maintains a local repository of in-situ marine bio-optical data, the SeaWiFS Biooptical Archive and Storage System (SeaBASS), to facilitate their ocean color satellite validation analyses. Data were acquired from SeaBASS and used to compile a large set of coincident radiometric observations and phytoplankton pigment concentrations for use in biooptical algorithm development. This new data set, the NASA bio-Optical Marine Algorithm Data set (NOMAD), includes over 3400 stations of spectral water-leaving radiances, surface irradiances, and diffuse downwelling attenuation coefficients, encompassing chlorophyll a concentrations ranging from 0.012 to 72.12 mg m(-3). Metadata, such as the date, time, and location of data collection, and ancillary data, including sea surface temperatures and water depths, accompany each record. This paper describes the assembly and evaluation of NOMAD, and further illustrates the broad geophysical range of stations incorporated into NOMAD. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:122 / 140
页数:19
相关论文
共 94 条
[1]   Airborne hyperspectral detection of microbial mat pigmentation in Rangiroa atoll (French Polynesia) [J].
Andréfouët, S ;
Payri, C ;
Hochberg, EJ ;
Che, LM ;
Atkinson, MJ .
LIMNOLOGY AND OCEANOGRAPHY, 2003, 48 (01) :426-430
[2]   Oceanic primary production .2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll [J].
Antoine, D ;
Andre, JM ;
Morel, A .
GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (01) :57-69
[3]  
ARNONE RA, 1994, P SOC PHOTO-OPT INS, V2258, P322, DOI 10.1117/12.190075
[4]  
Austin R. W., 1981, Oceanography from Space. Proceedings of the COSPAR/SCOR/IUCRM Symposium, P239
[5]  
Austin R. W., 1974, OPTICAL ASPECTS OCEA, P317
[6]  
BAILEY SW, 2005, OPERATIONAL NASA OCE
[7]  
Baith K., 2001, EOS Trans. Am. Geophys. Union, V82, P202, DOI [10.1029/01EO00109, DOI 10.1029/01EO00109, DOI 10.1029/01E000109]
[8]   Development of a consistent multi-sensor global ocean colour time series [J].
Barnes, RA ;
Clark, DK ;
Esaias, WE ;
Fargion, GS ;
Feldman, GC ;
McClain, CR .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (20) :4047-4064
[9]   Biospheric primary production during an ENSO transition [J].
Behrenfeld, MJ ;
Randerson, JT ;
McClain, CR ;
Feldman, GC ;
Los, SO ;
Tucker, CJ ;
Falkowski, PG ;
Field, CB ;
Frouin, R ;
Esaias, WE ;
Kolber, DD ;
Pollack, NH .
SCIENCE, 2001, 291 (5513) :2594-2597
[10]  
BIANCHI TS, 1995, B MAR SCI, V56, P25