Pointwise confidence intervals in nonparametric regression with heteroscedastic error structure

被引:10
作者
Neumann, MH
机构
[1] Weierstrass-Inst. F. Angew. Anal. S.
[2] Weierstrass-Inst. F. Angew. Anal. S., D - 10117 Berlin
关键词
nonparametric regression; asymptotic confidence interval; error in coverage probability; Edgeworth expansion; Cornish-Fisher expansion; wild bootstrap;
D O I
10.1080/02331889708802572
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We assume a nonparametric model with heteroscedastic error structure and consider pointwise confidence intervals for the mean. We construct them by using quantiles from a Cornish-Fisher expansion and from the wild bootstrap distribution, with as well as without a subsequent bias correction. It turns out that pure undersmoothing, where the Full smoothness is used by the initial estimator, outperforms the method with a subsequent bias correction.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 20 条
[1]  
AMOSOVA NN, 1972, VESTNIK LENINGRAD U, V13, P5
[2]  
[Anonymous], STATISTICS
[3]  
Bhattacharya R. N., 1986, Normal Approximation and Asymptotic Expansions
[4]   RATE OF CONVERGENCE FOR THE WILD BOOTSTRAP IN NONPARAMETRIC REGRESSION [J].
CAOABAD, R .
ANNALS OF STATISTICS, 1991, 19 (04) :2226-2231
[5]  
Csorgo M., 1981, Probability and Mathematical Statistics
[6]  
Gasser T., 1979, LECT NOTES MATH, P23, DOI DOI 10.1007/BFB0098489
[7]  
HALL P, 1989, J ROY STAT SOC B MET, V51, P3
[8]   ON BOOTSTRAP CONFIDENCE-INTERVALS IN NONPARAMETRIC REGRESSION [J].
HALL, P .
ANNALS OF STATISTICS, 1992, 20 (02) :695-711
[10]   BETTER BOOTSTRAP CONFIDENCE-INTERVALS FOR REGRESSION CURVE ESTIMATION [J].
HARDLE, W ;
HUET, S ;
JOLIVET, E .
STATISTICS, 1995, 26 (04) :287-306