Haar measure and the Artin conductor

被引:25
作者
Gross, BH [1 ]
Gan, WT
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
关键词
D O I
10.1090/S0002-9947-99-02095-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected reductive group, defined over a local, non-archimedean field k. The group G(k) is locally compact and unimodular. In On the motive of a reductive group, Invent. Math. 130 (1997), by B. H. Gross, a Haar measure \omega(G)\ was defined on G(k), using the theory of Bruhat and Tits. In this note, we give another construction of the measure \omega G\, using the Artin conductor of the motive M of G over k. The equivalence of the two constructions is deduced from a result of G. Prasad.
引用
收藏
页码:1691 / 1704
页数:14
相关论文
共 14 条
[1]  
[Anonymous], 1996, CAMBRIDGE STUDIES AD
[2]  
Bruhat T., 1972, Publications Mathematiques de l'I.H.E.S, V41, P5
[3]   INVARIANTS OF FINITE GROUPS GENERATED BY REFLECTIONS [J].
CHEVALLEY, C .
AMERICAN JOURNAL OF MATHEMATICS, 1955, 77 (04) :778-782
[4]   On the motive of a reductive group [J].
Gross, BH .
INVENTIONES MATHEMATICAE, 1997, 130 (02) :287-313
[5]   SIGN CHANGES IN HARMONIC-ANALYSIS ON REDUCTIVE GROUPS [J].
KOTTWITZ, RE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 278 (01) :289-297
[6]  
MILNOR J, 1973, SPRINGER ERGEBNISSE, V73
[7]   ARITHMETIC OF ALGEBRAIC TORI [J].
ONO, T .
ANNALS OF MATHEMATICS, 1961, 74 (01) :101-&
[8]  
PRASAD G, 1989, PUBL MATH-PARIS, V69, P91
[9]  
Serre J-P., 1979, SPRINGER GTM, V67
[10]   ARTINIAN CONDUCTORS OF REAL CHARACTERS [J].
SERRE, JP .
INVENTIONES MATHEMATICAE, 1971, 14 (03) :173-&