The Mehrotra predictor-corrector interior-point method as a perturbed composite Newton method

被引:10
作者
Tapia, R
Zhang, Y
Saltzman, M
Weiser, A
机构
[1] RICE UNIV, CTR RES PARALLEL COMPUTAT, HOUSTON, TX 77251 USA
[2] UNIV MARYLAND, DEPT MATH & STAT, CATONSVILLE, MD 21228 USA
[3] CLEMSON UNIV, DEPT MATH SCI, CLEMSON, SC 29634 USA
关键词
linear programming; primal-dual interior-point algorithms; Newton's method;
D O I
10.1137/0806004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that the celebrated Kojima-Mizuno-Yoshise primal-dual interior-point method for linear programming can be viewed as a damped perturbed Newton's method. Recently, Mehrotra suggested a predictor-corrector variant of this method. It is currently the interior-point method of choice for linear programming. The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton's method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. In this work we demonstrate that if the Newton component in the Kojima-Mizuno-Yoshise primal-dual method is replaced with a composite Newton component, then the resulting method is the Mehrotra predictor-corrector method.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 16 条
[1]  
Dennis, 1996, NUMERICAL METHODS UN
[2]   A STUDY OF INDICATORS FOR IDENTIFYING ZERO VARIABLES IN INTERIOR-POINT METHODS [J].
ELBAKRY, AS ;
TAPIA, RA ;
ZHANG, Y .
SIAM REVIEW, 1994, 36 (01) :45-72
[3]  
JI J, 1991, TR9123 RIC U DEP COM
[4]  
Kojima M, 1989, PROGR MATH PROGRAMMI, P29, DOI DOI 10.1007/978-1-4613-9617-8_2
[5]  
LUSTIG IJ, 1990, 9003 SOR PRINC U DEP
[6]  
Megiddo N, 1989, PROGR MATH PROGRAMMI, P131
[7]  
MEHROTRA S, 1990, 9003 NW U DEP IND EN
[8]  
MEHROTRA S, 1990, 8922 NW U DEP IND EN
[9]  
MIZUNO S, 1989, 878 CORN U SCH OP RE
[10]  
MONTEIRO RDC, 1988, 888 U CAL DEP IND EN