A Poisson mixture model to identify changes in RNA polymerase II binding quantity using high-throughput sequencing technology

被引:21
作者
Feng, Weixing [1 ,2 ,4 ]
Liu, Yunlong [1 ,2 ,3 ]
Wu, Jiejun [5 ]
Nephew, Kenneth P. [5 ,7 ,8 ,9 ]
Huang, Tim H. M. [6 ]
Li, Lang [1 ,2 ,9 ]
机构
[1] Indiana Univ Sch Med, Div Biostat, Indianapolis, IN 46202 USA
[2] Indiana Univ Sch Med, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46202 USA
[3] Indiana Univ Sch Med, Ctr Med Genom, Indianapolis, IN 46202 USA
[4] Harbin Engn Univ, Coll Automat, Harbin 150001, Heilongjiang, Peoples R China
[5] Indiana Univ Sch Med, Bloomington, IN 47405 USA
[6] Ohio State Univ, Ctr Comprehens Canc, Dept Mol Virol Immunol & Med Genet, Div Human Canc Genet, Columbus, OH 43210 USA
[7] Indiana Univ Sch Med, Dept Cellular, Indianapolis, IN 46202 USA
[8] Indiana Univ Sch Med, Dept Integrat Physiol, Indianapolis, IN 46202 USA
[9] IU Simon Canc Ctr, Indianapolis, IN 46202 USA
关键词
D O I
10.1186/1471-2164-9-S2-S23
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We present a mixture model-based analysis for identifying differences in the distribution of RNA polymerase II (Pol II) in transcribed regions, measured using ChIP-seq (chromatin immunoprecipitation following massively parallel sequencing technology). The statistical model assumes that the number of Pol II-targeted sequences contained within each genomic region follows a Poisson distribution. A Poisson mixture model was then developed to distinguish Pol II binding changes in transcribed region using an empirical approach and an expectation-maximization (EM) algorithm developed for estimation and inference. In order to achieve a global maximum in the M-step, a particle swarm optimization (PSO) was implemented. We applied this model to Pol II binding data generated from hormone-dependent MCF7 breast cancer cells and antiestrogen-resistant MCF7 breast cancer cells before and after treatment with 17 beta-estradiol (E2). We determined that in the hormone-dependent cells, similar to 9.9% (2527) genes showed significant changes in Pol II binding after E2 treatment. However, only similar to 0.7% (172) genes displayed significant Pol II binding changes in E2-treated antiestrogen-resistant cells. These results show that a Poisson mixture model can be used to analyze ChIP-seq data.
引用
收藏
页数:9
相关论文
共 15 条
[1]   Genome-wide analysis of estrogen receptor binding sites [J].
Carroll, Jason S. ;
Meyer, Clifford A. ;
Song, Jun ;
Li, Wei ;
Geistlinger, Timothy R. ;
Eeckhoute, Jerome ;
Brodsky, Alexander S. ;
Keeton, Erika Krasnickas ;
Fertuck, Kirsten C. ;
Hall, Giles F. ;
Wang, Qianben ;
Bekiranov, Stefan ;
Sementchenko, Victor ;
Fox, Edward A. ;
Silver, Pamela A. ;
Gingeras, Thomas R. ;
Liu, X. Shirley ;
Brown, Myles .
NATURE GENETICS, 2006, 38 (11) :1289-1297
[2]  
Dudoit S, 2002, STAT SINICA, V12, P111
[3]   Empirical Bayes analysis of a microarray experiment [J].
Efron, B ;
Tibshirani, R ;
Storey, JD ;
Tusher, V .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1151-1160
[4]   Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant [J].
Fan, Meiyun ;
Yan, Pearlly S. ;
Hartman-Frey, Cori ;
Chen, Lei ;
Paik, Henry ;
Oyer, Samuel L. ;
Salisbury, Jonathan D. ;
Cheng, Alfred S. L. ;
Li, Lang ;
Abbosh, Phillip H. ;
Huang, Tim H-M. ;
Nephew, Kenneth P. .
CANCER RESEARCH, 2006, 66 (24) :11954-11966
[5]  
FAN MYPS, 2006, CANCER RES, V66, P11964
[6]   Genome-wide mapping of in vivo protein-DNA interactions [J].
Johnson, David S. ;
Mortazavi, Ali ;
Myers, Richard M. ;
Wold, Barbara .
SCIENCE, 2007, 316 (5830) :1497-1502
[7]  
KENDZIORSKI C, 22 ANN C INT SOC CLI, V19, P23
[8]   Analysis of variance for gene expression microarray data [J].
Kerr, MK ;
Martin, M ;
Churchill, GA .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (06) :819-837
[9]  
Khalili A, 2007, CANCER INFORM, V3, P43
[10]   Chromatin immunoprecipitation and microarray-based analysis of protein location [J].
Lee, Tong Ihn ;
Johnstone, Sarah E. ;
Young, Richard A. .
NATURE PROTOCOLS, 2006, 1 (02) :729-748