Flow equations for the Henon-Heiles Hamiltonian

被引:8
作者
Cremers, D
Mielke, A
机构
[1] Univ Heidelberg, Inst Theoret Phys, D-69120 Heidelberg, Germany
[2] Humboldt Univ, Innovationskolleg Theoret Biol, D-10115 Berlin, Germany
来源
PHYSICA D | 1999年 / 126卷 / 1-2期
关键词
Henon-Heiles Hamiltonian; quantum chaos; flow equations;
D O I
10.1016/S0167-2789(98)00267-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Henon-Heiles Hamiltonian was introduced in 1964 [M. Henon, C. Heiles, Astron. J. 69 (1964) 73] as a mathematical model to describe the chaotic motion of stars in a galaxy. By canonically transforming the classical Hamiltonian to a Birkhoff-Gustavson normal form, Delos and Swimm obtained a discrete quantum mechanical energy spectrum. The aim of the present work is to first quantize the classical Hamiltonian and to then diagonalize it using different variants of flow equations, a method of continuous unitary transformations introduced by Wegner in 1994 [Ann. Physik (Leipzig) 3 (1994) 77]. The results of the diagonalization via flow equations are comparable to those obtained by the classical transformation. In the case of commensurate frequencies the transformation turns out to be less lengthy. In addition, the dynamics of the quantum mechanical system are analyzed on the basis of the transformed observables. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:123 / 135
页数:13
相关论文
共 15 条
[1]  
[Anonymous], ANN MATH
[2]  
Birkhoff G. D., 1927, DYNAMICAL SYSTEMS, V9
[3]   SEMICLASSICAL CALCULATION OF ENERGY-LEVELS FOR NON-SEPARABLE SYSTEMS [J].
DELOS, JB ;
SWIMM, RT .
CHEMICAL PHYSICS LETTERS, 1977, 47 (01) :76-79
[4]   ON CONSTRUCTING FORMAL INTEGRALS OF A HAMILTONIAN SYSTEM NEAR AN EQUILIBRIUM POINT [J].
GUSTAVSON, FG .
ASTRONOMICAL JOURNAL, 1966, 71 (08) :670-+
[5]  
Gutzwiller MC, 1990, CHAOS CLASSICAL QUAN
[6]   APPLICABILITY OF 3 INTEGRAL OF MOTION - SOME NUMERICAL EXPERIMENTS [J].
HENON, M ;
HEILES, C .
ASTRONOMICAL JOURNAL, 1964, 69 (01) :73-&
[7]  
Kehrein SK, 1997, ANN PHYS-LEIPZIG, V6, P90, DOI 10.1002/andp.19975090203
[8]   On the spin-boson model with a sub-ohmic bath [J].
Kehrein, SK ;
Mielke, A .
PHYSICS LETTERS A, 1996, 219 (5-6) :313-318
[9]   Flow equations for electron-phonon interactions [J].
Lenz, P ;
Wegner, F .
NUCLEAR PHYSICS B, 1996, 482 (03) :693-712
[10]   Flow equations for band-matrices [J].
Mielke, A .
EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (03) :605-611