Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: New transition-state searching method for resolving the complex reaction network

被引:434
作者
Wang, Hui-Fang [1 ]
Liu, Zhi-Pan [1 ]
机构
[1] Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
关键词
D O I
10.1021/ja801648h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new tran siti on-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH(3)CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH(2)CO or CHCO), which leads to complete oxidation to CO(2). However, only partial oxidizations to CH(3)CHO and CH(3)COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.
引用
收藏
页码:10996 / 11004
页数:9
相关论文
共 59 条
[1]   Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts [J].
Alcala, R ;
Shabaker, JW ;
Huber, GW ;
Sanchez-Castillo, MA ;
Dumesic, JA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (06) :2074-2085
[2]   DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt(111) [J].
Alcalá, R ;
Mavrikakis, M ;
Dumesic, JA .
JOURNAL OF CATALYSIS, 2003, 218 (01) :178-190
[3]   Catalysts for direct ethanol fuel cells [J].
Antolini, Ermete .
JOURNAL OF POWER SOURCES, 2007, 170 (01) :1-12
[4]   Platinum-based ternary catalysts for low temperature fuel cells Part II. Electrochemical properties [J].
Antolini, Ermete .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2007, 74 (3-4) :337-350
[5]   INSITU ANALYSIS BY INFRARED REFLECTANCE SPECTROSCOPY OF THE ADSORBED SPECIES RESULTING FROM THE ELECTROSORPTION OF ETHANOL ON PLATINUM IN ACID-MEDIUM [J].
BEDEN, B ;
MORIN, MC ;
HAHN, F ;
LAMY, C .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 229 (1-2) :353-366
[6]   The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis [J].
Bligaard, T ;
Norskov, JK ;
Dahl, S ;
Matthiesen, J ;
Christensen, CH ;
Sehested, J .
JOURNAL OF CATALYSIS, 2004, 224 (01) :206-217
[7]  
BROYDEN CG, 1965, MATH COMPUT, V19, P557
[8]   Catalysis of ethanol electro oxidation by PtRu: the influence of catalyst composition [J].
Camara, GA ;
de Lima, RB ;
Iwasita, T .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (08) :812-815
[9]   Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach [J].
Cao, D ;
Lu, GQ ;
Wieckowski, A ;
Wasileski, SA ;
Neurock, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (23) :11622-11633
[10]   METAL CRYSTALLINITY EFFECTS IN ELECTROCATALYSIS AS PROBED BY REAL-TIME FTIR SPECTROSCOPY - ELECTROOXIDATION OF FORMIC-ACID, METHANOL, AND ETHANOL ON ORDERED LOW-INDEX PLATINUM SURFACES [J].
CHANG, SC ;
LEUNG, LWH ;
WEAVER, MJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (15) :6013-6021