Efficient and reliable methods for rounded-interval arithmetic

被引:17
作者
Abrams, SL
Cho, W
Hu, CY
Maekawa, T
Patrikalakis, NM [1 ]
Sherbrooke, EC
Ye, X
机构
[1] MIT, Dept Ocean Engn, Design Lab, Cambridge, MA 02139 USA
[2] SolidWorks Corp, Concord, MA 01742 USA
[3] New Technol Inc, Cambridge, MA 02142 USA
基金
美国国家科学基金会;
关键词
binary representation; denormalized number; IEEE Std 754-1985; rounded-interval arithmetic; unit-in-the-last-place;
D O I
10.1016/S0010-4485(97)00086-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present an efficient and reliable method for computing the unit-in-the-last-place (ulp) of a double-precision floating-point number, taking advantage of the standard binary representation for floating-point numbers defined by IEEE Std 754-1985. The ulp is necessary to perform software rounding for robust rounded-interval arithmetic (RIA) operations. Hardware rounding, using two of the standard rounding modes defined by IEEE-754, may be more efficient. RIA has been used to produce robust software systems for the solution of systems of nonlinear equations, interrogation of geometric and differential properties of curves and surfaces, curve and surface intersections, and solid modeling. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:657 / 665
页数:9
相关论文
共 16 条
[1]  
*ANSI IEEE, 1985, 7541985 ANSI IEEE
[2]  
CHO W, 1997, THESIS MIT CAMBRIDGE
[3]   Topologically reliable approximation of composite Bezier curves [J].
Cho, WJ ;
Maekawa, T ;
Patrikalakis, NM .
COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (06) :497-520
[4]   WHAT EVERY COMPUTER SCIENTIST SHOULD KNOW ABOUT FLOATING-POINT ARITHMETIC [J].
GOLDBERG, D .
COMPUTING SURVEYS, 1991, 23 (01) :5-48
[5]   Robust interval algorithm for surface intersections [J].
Hu, CY ;
Maekawa, T ;
Patrikalakis, NM ;
Ye, XZ .
COMPUTER-AIDED DESIGN, 1997, 29 (09) :617-627
[6]   Robust interval algorithm for curve intersections [J].
Hu, CY ;
Maekawa, T ;
Sherbrooke, EC ;
Patrikalakis, NM .
COMPUTER-AIDED DESIGN, 1996, 28 (6-7) :495-506
[7]   Robust interval solid modelling .2. Boundary evaluation [J].
Hu, CY ;
Patrikalakis, NM ;
Ye, XZ .
COMPUTER-AIDED DESIGN, 1996, 28 (10) :819-830
[8]   Robust interval solid modelling .1. Representations [J].
Hu, CY ;
Patrikalakis, NM ;
Ye, XZ .
COMPUTER-AIDED DESIGN, 1996, 28 (10) :807-817
[9]  
Kernighan B. W., 1988, C PROGRAMMING LANGUA
[10]   COMPUTATION OF SINGULARITIES AND INTERSECTIONS OF OFFSETS OF PLANAR CURVES [J].
MAEKAWA, T ;
PATRIKALAKIS, NM .
COMPUTER AIDED GEOMETRIC DESIGN, 1993, 10 (05) :407-429