Weyl formulas for quantum ray-splitting billiards

被引:20
作者
Kohler, A [1 ]
Blumel, R [1 ]
机构
[1] Univ Freiburg, Fak Phys, D-79104 Freiburg, Germany
关键词
D O I
10.1006/aphy.1998.5817
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive analytical expressions for the Weyl formulas of two- and three-dimensional ray-splitting billiards. Our analytical results are in excellent agreement with numerical checks. (C) 1998 Academic Press.
引用
收藏
页码:249 / 280
页数:32
相关论文
共 27 条
[1]  
Abramowitz M., 1964, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[2]   GAUSSIAN ORTHOGONAL ENSEMBLE STATISTICS IN A MICROWAVE STADIUM BILLIARD WITH CHAOTIC DYNAMICS - PORTER-THOMAS DISTRIBUTION AND ALGEBRAIC DECAY OF TIME CORRELATIONS [J].
ALT, H ;
GRAF, HD ;
HARNEY, HL ;
HOFFERBERT, R ;
LENGELER, H ;
RICHTER, A ;
SCHARDT, P ;
WEIDENMULLER, HA .
PHYSICAL REVIEW LETTERS, 1995, 74 (01) :62-65
[3]  
[Anonymous], GOTT NACH
[4]  
Baltes H. P., 1976, Spectra of Finite Systems
[5]   Signature of non-Newtonian orbits in ray-splitting cavities [J].
Bauch, S ;
Bledowski, A ;
Sirko, L ;
Koch, PM ;
Blumel, R .
PHYSICAL REVIEW E, 1998, 57 (01) :304-315
[6]   DIABOLICAL POINTS IN THE SPECTRA OF TRIANGLES [J].
BERRY, MV ;
WILKINSON, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1984, 392 (1802) :15-43
[7]   HIGH ORDERS OF THE WEYL EXPANSION FOR QUANTUM BILLIARDS - RESURGENCE OF PERIODIC-ORBITS, AND THE STOKES PHENOMENON [J].
BERRY, MV ;
HOWLS, CJ .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1994, 447 (1931) :527-555
[8]   Ray splitting and quantum chaos [J].
Blumel, R ;
Antonsen, TM ;
Georgeot, B ;
Ott, E ;
Prange, RE .
PHYSICAL REVIEW E, 1996, 53 (04) :3284-3302
[9]  
BLUMEL R, 1996, PHYS BL, V52, P1243
[10]  
BLUMEL R, 1997, CHAOS ATOMIC PHYSICS