Renormalization of pinned elastic systems: How does it work beyond one loop?

被引:182
作者
Chauve, P
Le Doussal, P
Wiese, KJ
机构
[1] Univ Paris Sud, CNRS, Phys Solides Lab, F-91405 Orsay, France
[2] Ecole Normale Super, CNRS, Phys Theor Lab, F-75231 Paris 05, France
[3] Univ Calif Santa Barbara, ITP, Santa Barbara, CA 93106 USA
关键词
D O I
10.1103/PhysRevLett.86.1785
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the field theories for pinned elastic systems at equilibrium and at depinning. Their beta functions differ to two loops by novel "anomalous'' terms. At equilibrium we find a roughness zeta = 0.208 298 04 epsilon + 0.006 858 epsilon (2) (random bond), zeta = epsilon /3 (random field). At depinning we prove two-loop renomalizability and that random field attracts shorter range disorder. We find zeta = epsilon /3(1 + 0.143 31 epsilon), epsilon = 4 - d, in violation of the conjecture zeta = E/3, solving the discrepancy with simulations. For long range elasticity zeta = epsilon /3(1 + 0.397 35 epsilon), epsilon = 2 - d, much closer to the experimental value (approximate to0.5 both for liquid helium contact line depinning and slow crack fronts) than the standard prediction 1/3.
引用
收藏
页码:1785 / 1788
页数:4
相关论文
共 23 条
  • [1] LARGE-N EXPANSION OF (4-EPSILON)-DIMENSIONAL ORIENTED MANIFOLDS IN RANDOM-MEDIA
    BALENTS, L
    FISHER, DS
    [J]. PHYSICAL REVIEW B, 1993, 48 (09): : 5949 - 5963
  • [2] The large scale energy landscape of randomly pinned objects
    Balents, L
    Bouchaud, JP
    Mezard, M
    [J]. JOURNAL DE PHYSIQUE I, 1996, 6 (08): : 1007 - 1020
  • [3] (4+N)-dimensional elastic manifolds in random media: A renormalization-group analysis
    Bucheli, H
    Wagner, OS
    Geshkenbein, VB
    Larkin, AI
    Blatter, G
    [J]. PHYSICAL REVIEW B, 1998, 57 (13): : 7642 - 7652
  • [4] Creep via dynamical functional renormalization group
    Chauve, P
    Giamarchi, T
    Le Doussal, P
    [J]. EUROPHYSICS LETTERS, 1998, 44 (01): : 110 - 115
  • [5] CHAUVE P, IN PRESS
  • [6] CHAUVE P, CONDMAT0006057
  • [7] Large time out-of-equilibrium dynamics of a manifold in a random potential
    Cugliandolo, LF
    Kurchan, J
    LeDoussal, P
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (13) : 2390 - 2393
  • [8] EFETOV KB, 1977, ZH EKSP TEOR FIZ, V45, P1236
  • [9] ERTAS D, CONDMAT9401027
  • [10] FISHER DS, CONDMAT9711179