Evaluation of bluetongue virus diagnostic tests in free-ranging bighorn sheep

被引:30
作者
Singer, RS
Boyce, WM [1 ]
Gardner, IA
Johnson, WO
Fisher, AS
机构
[1] Univ Calif Davis, Sch Vet Med, Dept Pathol Microbiol & Immunol, Davis, CA 95616 USA
[2] Univ Calif Davis, Sch Vet Med, Dept Med & Epidemiol, Davis, CA 95616 USA
[3] Univ Calif Davis, Div Stat, Davis, CA 95616 USA
[4] New Mexico Dept Game & Fish, Santa Fe, NM 87504 USA
关键词
bluetongue virus; sheep viruses; diagnosis viruses; maximum likelihood; Newton-Raphson; EM algorithm; sensitivity and specificity;
D O I
10.1016/S0167-5877(98)00067-1
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Five bluetongue virus (BTV) diagnostic tests were evaluated for use in free-ranging bighorn sheep. We sampled one bighorn sheep population four times between 1989 and 1995. The tests evaluated included virus isolation (VI), polymerase-chain reaction (PCR), serum neutralization (SN), agar-gel immunodiffusion (AGID), and competitive enzyme-linked immunosorbent assay (c-ELISA). The c-ELISA, AGID and SN tests had high levels of agreement in determining serogroup exposure in bighorn sheep. We used maximum-likelihood algorithms to estimate the parameters of each diagnostic test used. Although the c-ELISA and AGID had high sensitivity and specificity, the SN had perfect specificity but lower apparent sensitivity. Due to the potential of cross-reactions among multiple serotypes, results of the SN must be interpreted with caution when assessing serotype exposure in an area where multiple serotypes an endemic. The PCR assay delineated convalescent antibody titers from more-recent infections, and consequently, was pivotal in distinguishing a different exposure pattern between the bighorn sheep and cattle in an adjacent herd. Based on an increasing seroprevalence (50% to 100%), BTV circulated through this bighorn sheep population between 1989 and 1993, This increase in seroprevalence coincided with a bighorn die-off due to BTV infection in June, 1991. An adjacent cattle herd was sampled in 1995 for comparison. The bighorn sheep and adjacent cattle had different patterns of exposure to BTV between 1994 and 1995. There was no evidence that BTV circulated through the bighorn sheep population from 1994 to 1995. In 1995, seroprevalence to BTV decreased to 72%, none of yearling bighorn was seropositive, and all of the 39 bighorn sheep were PCR-negative. In contrast, all adult cattle were seropositive to BTV by c-ELISA and SN, and 4 of the calves were seropositive; 11 of the 24 cattle were PCR-positive, including all five calves. Overall, the pattern of temporal herd immunity in the bighorn sheep appeared to follow a classic epidemic curve, with the appearance and subsequent disappearance of herd immunity coinciding with the 1991 die-off in this population. As low levels of herd immunity and high proportions of susceptible animals are key factors in the development of epidemics, this population of bighorn sheep may be at increased risk for a BTV epidemic in the future. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:265 / 282
页数:18
相关论文
共 32 条
[1]   BLUETONGUE - LABORATORY DIAGNOSIS [J].
AFSHAR, A .
COMPARATIVE IMMUNOLOGY MICROBIOLOGY AND INFECTIOUS DISEASES, 1994, 17 (3-4) :221-242
[2]   DETECTION OF BLUETONGUE VIRUS IN CLINICAL-SAMPLES BY POLYMERASE CHAIN-REACTION [J].
AKITA, GY ;
GLENN, J ;
CASTRO, AE ;
OSBURN, BI .
JOURNAL OF VETERINARY DIAGNOSTIC INVESTIGATION, 1993, 5 (02) :154-158
[3]  
BARRATTBOYES SM, 1995, J AM VET MED ASSOC, V206, P1322
[4]  
Brenner H, 1996, STAT MED, V15, P1377, DOI 10.1002/(SICI)1097-0258(19960715)15:13<1377::AID-SIM275>3.0.CO
[5]  
2-#
[6]  
FERRIS RA, 1995, J AM VET MED ASSOC, V207, P1332
[7]  
FISHER AS, 1991, DESERT BIGHORN COUNC, V36, P80
[8]   Validity of using serological tests for diagnosis of diseases in wild animals [J].
Gardner, IA ;
Hietala, S ;
Boyce, WM .
REVUE SCIENTIFIQUE ET TECHNIQUE DE L OFFICE INTERNATIONAL DES EPIZOOTIES, 1996, 15 (01) :323-335
[9]  
GIBBS EPJ, 1983, AM J VET RES, V44, P2226
[10]   THE EPIDEMIOLOGY OF BLUETONGUE [J].
GIBBS, EPJ ;
GREINER, EC .
COMPARATIVE IMMUNOLOGY MICROBIOLOGY AND INFECTIOUS DISEASES, 1994, 17 (3-4) :207-220