Achieving the Welch bound with difference sets

被引:295
作者
Xia, PF [1 ]
Zhou, SL
Giannakis, GB
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[2] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
关键词
difference sets; generalized Lloyd algorithm; Grassmannian line packing; Welch bound;
D O I
10.1109/TIT.2005.846411
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consider a codebook containing N unit-norm complex vectors in a K-dimensional space. In a number of applications, the codebook that minimizes the maximal cross-correlation amplitude (I-max) is often desirable. Relying on tools from combinatorial number theory, we construct analytically optimal codebooks meeting, in certain cases, the Welch lower bound. When analytical constructions are not available, we develop an efficient numerical search method based on a generalized Lloyd algorithm, which leads to considerable improvement on the achieved I-max over existing alternatives. We also derive a composite lower bound on the minimum achievable I-max that is effective for any codebook size N.
引用
收藏
页码:1900 / 1907
页数:8
相关论文
共 23 条
[1]  
Conway J. H., 1996, EXP MATH, V5, P139
[2]  
DELSARTE P, 1975, PHILIPS RES REP, V30, P91
[3]   Meeting the Welch and Karystinos-Pados bounds on DS-CDMA binary signature sets [J].
Ding, CS ;
Golin, M ;
Klove, T .
DESIGNS CODES AND CRYPTOGRAPHY, 2003, 30 (01) :73-84
[4]  
Dinitz, 1996, CRC HDB COMBINATORIA
[5]  
Dinitz J. H., 1992, CONT DESIGN THEORY C
[6]  
Gersho A., 1992, VECTOR QUANTIZATION
[7]   Quantized frame expansions with erasures [J].
Goyal, VK ;
Kovacevic, J ;
Kelner, JA .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 10 (03) :203-233
[8]   Systematic design of unitary space-time constellations [J].
Hochwald, BM ;
Marzetta, TL ;
Richardson, TJ ;
Sweldens, W ;
Urbanke, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (06) :1962-1973
[9]   On the karystinos-pados bounds and optimal binary DS-CDMA signature ensembles [J].
Ipatov, VP .
IEEE COMMUNICATIONS LETTERS, 2004, 8 (02) :81-83
[10]   The maximum squared correlation, sum capacity, and total asymptotic efficiency of minimum, total-squared-correlation binary signature sets [J].
Karystinos, GN ;
Pados, DA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) :348-355