Nanopore/electrode structures for single-molecule biosensing

被引:33
作者
Ayub, Mariam [1 ,2 ]
Ivanov, Aleksandar [1 ,2 ]
Instuli, Emanuele [1 ,2 ]
Cecchini, Michael [1 ,2 ]
Chansin, Guillaume [1 ,2 ]
McGilvery, Catriona [3 ]
Hong, Jongin [1 ,2 ]
Baldwin, Geoff [4 ]
McComb, David [3 ]
Edel, Joshua B. [1 ,2 ]
Albrecht, Tim [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Inst Biomed Engn, London SW7 2AZ, England
[3] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England
[4] Univ London Imperial Coll Sci Technol & Med, Div Mol Biosci, London SW7 2AZ, England
关键词
Nanopore sensing; Solid state; DNA sequencing; Electrochemical nanoscience; Ion transport; ION-TRANSPORT; NANOPORE MEMBRANES; DNA; NOISE; PORES; TRANSLOCATION; RECTIFICATION; FABRICATION; RECORDINGS; MECHANISM;
D O I
10.1016/j.electacta.2010.03.051
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Biological and solid-state nanopores have recently attracted much interest as ultrafast DNA fragment sizing and sequencing devices Their potential however goes far beyond DNA sequencing In particular nanopores offer perspectives of single-molecule (bio)sensing at physiologically relevant concentrations which is key for studying protein/protein or protein/DNA interactions Integration of electrode structures into solid-state nanopore devices moreover enables control and fast switching of the pore properties e g for active control of biopolymer transport through the nanopore We present some of recent work in this area namely the fabrication and characterization of nanopore/electrode architectures for single-(bio)molecule sensing Specifically we introduce a new technique to fabricate ultra-small metal nanopores with diameters smaller than 20 nm based on ion current feedback (ICF) controlled electrodeposition It offers precise control of the pore conductance is easily multiplexed and can be extended to a wide range of different metals (C) 2010 Elsevier Ltd All rights reserved
引用
收藏
页码:8237 / 8243
页数:7
相关论文
共 64 条
[1]   Theory of Ion Transport in Electrochemically Switchable Nanoporous Metallized Membranes [J].
Amatore, Christian ;
Alexander, I. Oleinick ;
Svir, Irina .
CHEMPHYSCHEM, 2009, 10 (01) :211-221
[2]   Functional engineered channels and pores - (Review) [J].
Bayley, H ;
Jayasinghe, L .
MOLECULAR MEMBRANE BIOLOGY, 2004, 21 (04) :209-220
[3]   Designed protein pores as components for biosensors [J].
Braha, O ;
Walker, B ;
Cheley, S ;
Kasianowicz, JJ ;
Song, LZ ;
Gouaux, JE ;
Bayley, H .
CHEMISTRY & BIOLOGY, 1997, 4 (07) :497-505
[4]   The potential and challenges of nanopore sequencing [J].
Branton, Daniel ;
Deamer, David W. ;
Marziali, Andre ;
Bayley, Hagan ;
Benner, Steven A. ;
Butler, Thomas ;
Di Ventra, Massimiliano ;
Garaj, Slaven ;
Hibbs, Andrew ;
Huang, Xiaohua ;
Jovanovich, Stevan B. ;
Krstic, Predrag S. ;
Lindsay, Stuart ;
Ling, Xinsheng Sean ;
Mastrangelo, Carlos H. ;
Meller, Amit ;
Oliver, John S. ;
Pershin, Yuriy V. ;
Ramsey, J. Michael ;
Riehn, Robert ;
Soni, Gautam V. ;
Tabard-Cossa, Vincent ;
Wanunu, Meni ;
Wiggin, Matthew ;
Schloss, Jeffery A. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1146-1153
[5]   Dynamics of polyelectrolyte transport through a protein channel as a function of applied voltage [J].
Brun, L. ;
Pastoriza-Gallego, M. ;
Oukhaled, G. ;
Mathe, J. ;
Bacri, L. ;
Auvray, L. ;
Pelta, J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (15)
[6]   Single-molecule Spectroscopy using nanoporous membranes [J].
Chansin, Guillaume A. T. ;
Mulero, Rafael ;
Hong, Jongin ;
Kim, Min Jun ;
deMello, Andrew J. ;
Edel, Joshua B. .
NANO LETTERS, 2007, 7 (09) :2901-2906
[7]   A genetically encoded pore for the stochastic detection of a protein kinase [J].
Cheley, Stephen ;
Xie, Hongzhi ;
Bayley, Hagan .
CHEMBIOCHEM, 2006, 7 (12) :1923-1927
[8]   Protein transport through gold-coated, charged nanopores:: Effects of applied voltage [J].
Chun, KY ;
Mafé, S ;
Ramírez, P ;
Stroeve, P .
CHEMICAL PHYSICS LETTERS, 2006, 418 (4-6) :561-564
[9]  
COSSA VT, 2007, NANOTECHNOLOGY, V18
[10]  
Coulter W. H., 1953, US Pat, Patent No. 2656508