Loss of Shaker K channel conductance in 0 K+ solutions:: Role of the voltage sensor

被引:56
作者
Melishchuk, A [1 ]
Loboda, A [1 ]
Armstrong, CM [1 ]
机构
[1] Univ Penn, Sch Med, Dept Physiol, Philadelphia, PA 19104 USA
关键词
D O I
10.1016/S0006-3495(98)77624-6
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In potassium-free solutions some types of K channels enter a long-lasting nonconducting or "defunct" state. It is known that Shaker K channels must open in K+-free solutions to become defunct. Gating-current studies presented here indicate an abnormal conformation in the defunct state that restricts S4 movement and alters its kinetics. Thus an abnormality initiated in the P region spreads to the gating apparatus. We find that channels most readily become defunct on repolarization to an intermediate voltage, thus prolonging occupancy of one of the several intermediate closed states. The state dependence of becoming defunct was further dissected by using the gating mutant L382A. Simply closing this channel at 0 mV (reversing the last activation step) does not make the mutant channel defunct. Instead, It is necessary to move further left (more fully closed) in the activation sequence. this was confirmed with ShlR experiments showing that channels become defunct only if there is inward gating charge movement. Rapid transit through the intermediate states,achieved at very negative voltage, is relatively ineffective at making channels defunct. Several mutations that removed C-type inactivation also made the channels resistant to becoming defunct. Our results show that normal gating current cannot be stably recorded in the absence of K+.
引用
收藏
页码:1828 / 1835
页数:8
相关论文
共 22 条
[1]   SURVIVAL OF K+ PERMEABILITY AND GATING CURRENTS IN SQUID AXONS PERFUSED WITH K+-FREE MEDIA [J].
ALMERS, W ;
ARMSTRONG, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1980, 75 (01) :61-78
[2]   SODIUM AND POTASSIUM CURRENTS IN SQUID AXONS PERFUSED WITH FLUORIDE SOLUTIONS [J].
CHANDLER, WK ;
MEVES, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1970, 211 (03) :623-&
[3]   Allosteric effects of permeating cations on gating currents during K+ channel deactivation [J].
Chen, FSP ;
Steele, D ;
Fedida, D .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 110 (02) :87-100
[4]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[5]   A NOVEL POTASSIUM CHANNEL WITH DELAYED RECTIFIER PROPERTIES ISOLATED FROM RAT-BRAIN BY EXPRESSION CLONING [J].
FRECH, GC ;
VANDONGEN, AMJ ;
SCHUSTER, G ;
BROWN, AM ;
JOHO, RH .
NATURE, 1989, 340 (6235) :642-645
[6]   Shaker B K+ conductance in Na+ solutions lacking K+ ions: A remarkably stable non-conducting state produced by membrane depolarizations [J].
GomezLagunas, F .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 499 (01) :3-15
[7]   IMPROVED PATCH-CLAMP TECHNIQUES FOR HIGH-RESOLUTION CURRENT RECORDING FROM CELLS AND CELL-FREE MEMBRANE PATCHES [J].
HAMILL, OP ;
MARTY, A ;
NEHER, E ;
SAKMANN, B ;
SIGWORTH, FJ .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1981, 391 (02) :85-100
[8]  
Hille B, 1992, Ion Channels of Excitable Membranes
[9]   BIOPHYSICAL AND MOLECULAR MECHANISMS OF SHAKER POTASSIUM CHANNEL INACTIVATION [J].
HOSHI, T ;
ZAGOTTA, WN ;
ALDRICH, RW .
SCIENCE, 1990, 250 (4980) :533-538
[10]   2 TYPES OF INACTIVATION IN SHAKER K+ CHANNELS - EFFECTS OF ALTERATIONS IN THE CARBOXY-TERMINAL REGION [J].
HOSHI, T ;
ZAGOTTA, WN ;
ALDRICH, RW .
NEURON, 1991, 7 (04) :547-556