Multiscale hierarchical decomposition of images with applications to deblurring, denoising and segmentation

被引:1
作者
Tadmor, Eitan [1 ,2 ]
Nezzar, Suzanne [3 ]
Vese, Luminita [4 ]
机构
[1] Univ Maryland, Dept Math, Ctr Sci Computat & Math Modeling CSCAMM, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Richard Stockton Coll New Jersey, Pomona, NJ 08240 USA
[4] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
natural images; multiscale expansion; total variation; segmentation; image decomposition; image deblurring;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the ideas introduced in [33] for hierarchical multiscale decompositions of images. Viewed as a function f is an element of L-2 (Omega), a given image is hierarchically decomposed into the sum or product of simpler "atoms" u(k), where u(k) extracts more refined information from the previous scale u(k-1). To this end, the u(k)'s are obtained as dyadically scaled minimizers of standard functionals arising in image analysis. Thus, starting with v(-1) := f and letting v(k) denote the residual at a given dyadic scale, lambda(k) similar to 2(k), the recursive step [u(k), v(k)] - arginf Q(T) (v(k-1), lambda(k)) leads to the desired hierarchical decomposition, f similar to Sigma Tu(k); here T is a blurring operator. We characterize such Q(T)-minimizers (by duality) and expand our previous energy estimates of the data f in terms of parallel to u(k)parallel to. Numerical results illustrate applications of the new hierarchical multiscale decomposition for blurry images, images with additive and multiplicative noise and image segmentation.
引用
收藏
页码:281 / 307
页数:27
相关论文
共 36 条
[1]   ANALYSIS OF BOUNDED VARIATION PENALTY METHODS FOR ILL-POSED PROBLEMS [J].
ACAR, R ;
VOGEL, CR .
INVERSE PROBLEMS, 1994, 10 (06) :1217-1229
[2]  
AMBROSIO L, 1992, B UNIONE MAT ITAL, V6B, P105
[3]  
Andreu-Vaillo F., 2004, PARABOLIC QUASILINEA
[4]   A variational method in image recovery [J].
Aubert, G ;
Vese, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1948-1979
[5]  
AVERBUCH AZ, 1998, P INT C IM PROC ICIP, V2, P292
[6]  
Bennet C., 1988, INTERPOLATION OPERAT
[7]  
Bergh J., 1976, INTERPOLATION SPACES
[8]   A review of image denoising algorithms, with a new one [J].
Buades, A ;
Coll, B ;
Morel, JM .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :490-530
[9]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[10]  
CHAMBOLLE A, 1995, SPIE EL IM P, V2567