A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ

被引:292
作者
Gibbs, PEM
McGregor, WG
Maher, VM
Nisson, P
Lawrence, CW
机构
[1] Univ Rochester, Sch Med & Dent, Dept Biochem & Biophys, Rochester, NY 14642 USA
[2] Michigan State Univ, Carcinogenesis Lab, E Lansing, MI 48824 USA
[3] Life Technol Inc, Res & Dev, Rockville, MD 20850 USA
关键词
UV mutagenesis; yeast REV3; 5 ' rapid amplification of cDNA ends;
D O I
10.1073/pnas.95.12.6876
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To get a better understanding of mutagenic mechanisms in humans, we have cloned and sequenced the human homolog of the Saccharomyces cerevisiae REV3 gene. The yeast gene encodes the catalytic subunit of DNA polymerase zeta, a nonessential enzyme that is thought to carry out translesion replication and is responsible for virtually all DNA damage-induced mutagenesis and the majority of spontaneous mutagenesis. The human gene encodes an expected protein of 3,130 residues, about twice the size of the yeast protein (1,504 aa). The two proteins are 29% identical in an aminoterminal region of approximate to 340 residues, 39% identical in a carboxyl-terminal region of approximate to 850 residues, and 29% identical in a 55-residue region in the middle of the two genes. The sequence of the expected protein strongly predicts that it is the catalytic subunit of a DNA polymerase of the pot zeta type; the carboxyl-terminal domain possesses, in the right order, the six motifs characteristic of eukaryotic DNA polymerases, most closely resembles yeast pol zeta among all polymerases in the GenBank database, and Is different from the human alpha, delta, and epsilon enzymes. Human cells expressing high levels of an hsREV3 antisense RNA fragment grow normally, but show little or no UV-induced mutagenesis and are slightly more sensitive to killing by UV. The human gene therefore appears to carry out a function similar to that of its yeast counterpart.
引用
收藏
页码:6876 / 6880
页数:5
相关论文
共 30 条
[1]   RAPID CDNA SEQUENCING (EXPRESSED SEQUENCE TAGS) FROM A DIRECTIONALLY CLONED HUMAN INFANT BRAIN CDNA LIBRARY [J].
ADAMS, MD ;
SOARES, MB ;
KERLAVAGE, AR ;
FIELDS, C ;
VENTER, JC .
NATURE GENETICS, 1993, 4 (04) :373-386
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]  
Ausubel F.A., 1997, CURRENT PROTOCOLS MO, DOI DOI 10.1.4
[4]   SPECIFIC COMPLEX-FORMATION BETWEEN YEAST RAD6 AND RAD18 PROTEINS - A POTENTIAL MECHANISM FOR TARGETING RAD6 UBIQUITIN-CONJUGATING ACTIVITY TO DNA-DAMAGE SITES [J].
BAILLY, V ;
LAMB, J ;
SUNG, P ;
PRAKASH, S ;
PRAKASH, L .
GENES & DEVELOPMENT, 1994, 8 (07) :811-820
[5]   COMPILATION, ALIGNMENT, AND PHYLOGENETIC-RELATIONSHIPS OF DNA-POLYMERASES [J].
BRAITHWAITE, DK ;
ITO, J .
NUCLEIC ACIDS RESEARCH, 1993, 21 (04) :787-802
[6]   MULTIPLE SEQUENCE ALIGNMENT WITH HIERARCHICAL-CLUSTERING [J].
CORPET, F .
NUCLEIC ACIDS RESEARCH, 1988, 16 (22) :10881-10890
[7]   ASSOCIATION OF INCREASED SPONTANEOUS MUTATION-RATES WITH HIGH-LEVELS OF TRANSCRIPTION IN YEAST [J].
DATTA, A ;
JINKSROBERTSON, S .
SCIENCE, 1995, 268 (5217) :1616-1619
[8]   RAPID PRODUCTION OF FULL-LENGTH CDNAS FROM RARE TRANSCRIPTS - AMPLIFICATION USING A SINGLE GENE-SPECIFIC OLIGONUCLEOTIDE PRIMER [J].
FROHMAN, MA ;
DUSH, MK ;
MARTIN, GR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (23) :8998-9002
[9]   TIGHT CONTROL OF GENE-EXPRESSION IN MAMMALIAN-CELLS BY TETRACYCLINE-RESPONSIVE PROMOTERS [J].
GOSSEN, M ;
BUJARD, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (12) :5547-5551
[10]   Molecular characterization of seizure-related genes isolated by differential screening [J].
Kajiwara, K ;
Nagawawa, H ;
ShimizuNishikawa, K ;
Ookura, T ;
Kimura, M ;
Sugaya, E .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 219 (03) :795-799