Effect of amplitude and frequency of cyclic tensile strain on the inhibition of MMP-1 mRNA expression in tendon cells: An in vitro study

被引:128
作者
Lavagnino, M [1 ]
Arnoczky, SP [1 ]
Tian, T [1 ]
Vaupel, Z [1 ]
机构
[1] Michigan State Univ, Coll Vet Med, Lab Comparat Orthopaed Res, E Lansing, MI 48824 USA
关键词
cells; cyclic strain; MMP-1; tendon;
D O I
10.1080/03008200390215881
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
To determine the effect of cyclic strain amplitude and frequency on MMP-1 (interstitial collagenase) expression in tendon cells, rat tail tendons (RTT) were immobilized or cyclically displaced to various amplitudes (1, 3, or 6% strain at 0.017 Hz) or frequencies (1% strain at 0.017, 0.17, or 1.0 Hz) for 24 hr. Stress-deprivation for 24 hr resulted in a marked upregulation in MMP-1 expression. Cyclic tensile loading at 0.017 Hz was found to significantly inhibit, but not completely eliminate, MMP-1 expression at 1% strain. MMP-1 expression was completely eliminated at 3 and 6% strain. Increasing the frequency of application of the 1% strain to 0.17 or 1.0 Hz completely eliminated MMP-1 expression. Disruption of the actin cytoskeleton with cytochalasin D abolished all inhibitory effects of cyclic strain on MMP-1 expression. The results of our study demonstrate that MMP-1 expression in tendon cells can be modulated by varying amplitudes and frequencies of cyclic tensile strain, presumably through a cytoskeletally based mechanotransduction pathway.
引用
收藏
页码:181 / 187
页数:7
相关论文
共 44 条
[1]   CHANGES IN CELL-SHAPE CORRELATE WITH COLLAGENASE GENE-EXPRESSION IN RABBIT SYNOVIAL FIBROBLASTS [J].
AGGELER, J ;
FRISCH, SM ;
WERB, Z .
JOURNAL OF CELL BIOLOGY, 1984, 98 (05) :1662-1671
[2]   THE EFFECT OF IMMOBILIZATION ON COLLAGEN TURNOVER IN CONNECTIVE-TISSUE - A BIOCHEMICAL-BIOMECHANICAL CORRELATION [J].
AMIEL, D ;
WOO, SLY ;
HARWOOD, FL ;
AKESON, WH .
ACTA ORTHOPAEDICA SCANDINAVICA, 1982, 53 (03) :325-332
[3]   Rabbit tendon cells produce MMP-3 in response to fluid flow without significant calcium transients [J].
Archambault, JM ;
Elfervig-Wall, MK ;
Tsuzaki, M ;
Herzog, W ;
Banes, AJ .
JOURNAL OF BIOMECHANICS, 2002, 35 (03) :303-309
[4]   In situ cell nucleus deformation in tendons under tensile load; a morphological analysis using confocal laser microscopy [J].
Arnoczky, SP ;
Lavagnino, M ;
Whallon, JH ;
Hoonjan, A .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2002, 20 (01) :29-35
[5]   Activation of stress-activated protein kinases (SAPK) in tendon cells following cyclic strain: the effects of strain frequency, strain magnitude, and cytosolic calcium [J].
Arnoczky, SP ;
Tian, T ;
Lavagnino, M ;
Gardner, K ;
Schuler, P ;
Morse, P .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2002, 20 (05) :947-952
[6]  
ARNOCZKY SP, 2003, T ORTHO RES SOC, V28, P791
[7]   PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro [J].
Banes, AJ ;
Tsuzaki, M ;
Hu, PQ ;
Brigman, B ;
Brown, T ;
Almekinders, L ;
Lawrence, WT ;
Fischer, T .
JOURNAL OF BIOMECHANICS, 1995, 28 (12) :1505-1513
[8]   Mechanoreception at the cellular level: The detection, interpretation, and diversity of responses to mechanical signals [J].
Banes, AJ ;
Tsuzaki, M ;
Yamamoto, J ;
Fischer, T ;
Brigman, B ;
Brown, T ;
Miller, L .
BIOCHEMISTRY AND CELL BIOLOGY, 1995, 73 (7-8) :349-365
[9]  
BHARGAVA MM, 1997, ANN BIOMED ENG, V25, pS77
[10]   Immobilization increases the vulnerability of rabbit medial collateral ligament autografts to creep [J].
Boorman, RS ;
Shrive, NG ;
Frank, CB .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1998, 16 (06) :682-689