Parametric evolution for a deformed cavity

被引:20
作者
Cohen, D [1 ]
Barnett, A
Heller, EJ
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 04期
关键词
D O I
10.1103/PhysRevE.63.046207
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a classically chaotic system that is described by a Hamiltonian H(Q,P;x), where (Q,P) describes a particle moving inside a cavity, and x controls a deformation of the boundary. The quantum eigenstates of the system are \n(x)]. We describe how the parametric kernel P(n\m)=\[n(x)\m(x(0))]\(2), also known as the local density of states, evolves as a function of deltax=x-x(0). We illuminate the nonunitary nature of this parametric evolution, the emergence of nonperturbative features, the final nonuniversal saturation, and the limitations of random-wave considerations. The parametric evolution is demonstrated numerically for two distinct representative deformation processes.
引用
收藏
页数:12
相关论文
共 23 条
[1]   Deformations and dilations of chaotic billiards: Dissipation rate, and quasiorthogonality of the boundary wave functions [J].
Barnett, A ;
Cohen, D ;
Heller, EJ .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1412-1415
[2]  
BARNETT A, IN PRESS J PHYS A
[3]  
BARNETT A, 2000, THESIS HARVARD
[4]   DIABOLICAL POINTS IN THE SPECTRA OF TRIANGLES [J].
BERRY, MV ;
WILKINSON, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1984, 392 (1802) :15-43
[5]   Quantum-classical correspondence in energy space: Two interacting spin particles [J].
Borgonovi, F ;
Guarneri, I ;
Izrailev, FM .
PHYSICAL REVIEW E, 1998, 57 (05) :5291-5302
[6]   BAND-RANDOM-MATRIX MODEL FOR QUANTUM LOCALIZATION IN CONSERVATIVE-SYSTEMS [J].
CASATI, G ;
CHIRIKOV, BV ;
GUARNERI, I ;
IZRAILEV, FM .
PHYSICAL REVIEW E, 1993, 48 (03) :R1613-R1616
[7]   Quantum ergodicity and localization in conservative systems: The Wigner band random matrix model [J].
Casati, G ;
Chirikov, BV ;
Guarneri, I ;
Izrailev, FM .
PHYSICS LETTERS A, 1996, 223 (06) :430-435
[8]   Chaos and energy spreading for time-dependent hamiltonians, and the various regimes in the theory of quantum dissipation [J].
Cohen, D .
ANNALS OF PHYSICS, 2000, 283 (02) :175-231
[9]   Quantum dissipation due to the interaction with chaotic degrees of freedom and the correspondence principle [J].
Cohen, D .
PHYSICAL REVIEW LETTERS, 1999, 82 (25) :4951-4955
[10]   Unification of perturbation theory, random matrix theory, and semiclassical considerations in the study of parametrically dependent eigenstates [J].
Cohen, D ;
Heller, EJ .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2841-2844