In situ Raman spectroscopy study of different kinds of graphite electrodes in ionic liquid electrolytes

被引:48
作者
Baranchugov, V. [1 ]
Markevich, E. [1 ]
Salitra, G. [1 ]
Aurbach, D. [1 ]
Semrau, Guenter [2 ]
Schmidt, Michael A. [2 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Merck KgaA, D-64293 Darmstadt, Germany
关键词
D O I
10.1149/1.2828858
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this paper, the study of three types of graphite electrodes in two types of ionic liquid solutions (ILs) using in situ Raman spectroscopy and X-ray diffraction in conjunction with electrochemical techniques such as voltammetry is described. The graphite materials included two types of synthetic flakes, differing from each other in their average particle size, and natural graphite flakes. The ILs included 1-methyl-l-propylpiperidinium bis(trifluoromethyl sulfonyl)imide (MPPp-TFSI) and 1-methyl-1-butyl pyrrolidinium bis(trifluoromethyl sulfonyl)imide (BMP-TFSI). The Li salt was Li TFSI. The graphite electrodes can intercalate with both Li ions and IL cations simultaneously. The latter intercalate with graphite at higher potentials (the onset potential is > 0.7 V). The graphite electrodes develop passivation in the above Li TFSI/Li solutions upon their cathodic polarization, which blocks the intercalation of the IL cations but allows highly reversible intercalation with lithium. In situ Raman spectroscopy proved to be a very useful tool for studying both Li and IL cation intercalation processes with graphite electrodes and for determining their onset and reversibility. The effectiveness of the passivation of graphite electrodes in these solutions depends on both the type of graphite used and the structure of the IL cations. The most effective passivation, developed during a first cathodic. polarization of the electrodes, was found for natural graphite electrodes and for MPPp(+)-based solutions. The important factors that may determine the performance of graphite electrodes in these systems are discussed. (C) 2008 The Electrochemical Society.
引用
收藏
页码:A217 / A227
页数:11
相关论文
共 56 条
[1]   Ionic liquid and plastic crystalline phases of pyrazolium imide salts as electrolytes for rechargeable lithium-ion batteries [J].
Abu-Lebdeh, Y ;
Abouimrane, A ;
Alarco, PJ ;
Armand, M .
JOURNAL OF POWER SOURCES, 2006, 154 (01) :255-261
[2]   Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems [J].
Aurbach, D ;
Zaban, A ;
Ein-Eli, Y ;
Weissman, I ;
Chusid, O ;
Markovsky, B ;
Levi, M ;
Levi, E ;
Schechter, A ;
Granot, E .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :91-98
[3]   LiC(SO2CF3)3, a new salt for Li battery systems. A comparative study of Li and non-active metal electrodes in its ethereal solutions using in situ FTIR spectroscopy [J].
Aurbach, D ;
Chusid, O ;
Weissman, I ;
Dan, P .
ELECTROCHIMICA ACTA, 1996, 41 (05) :747-760
[4]   Design of electrolyte solutions for Li and Li-ion batteries: a review [J].
Aurbach, D ;
Talyosef, Y ;
Markovsky, B ;
Markevich, E ;
Zinigrad, E ;
Asraf, L ;
Gnanaraj, JS ;
Kim, HJ .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :247-254
[5]   Electrode-solution interactions in Li-ion batteries: a short summary and new insights [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2003, 119 :497-503
[6]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[7]   Morphology/behavior relationship in reversible electrochemical lithium insertion into graphitic materials [J].
Aurbach, D ;
Teller, H ;
Levi, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1255-A1266
[8]   FILMING MECHANISM OF LITHIUM-CARBON ANODES IN ORGANIC AND INORGANIC ELECTROLYTES [J].
BESENHARD, JO ;
WINTER, M ;
YANG, J ;
BIBERACHER, W .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :228-231
[9]   Behaviour of highly crystalline graphites in lithium-ion cells with propylene carbonate containing electrolytes [J].
Buqa, H ;
Würsig, A ;
Goers, A ;
Hardwick, LJ ;
Holzapfel, M ;
Novák, P ;
Krumeich, F ;
Spahr, ME .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :134-141
[10]   Negative Electrodes in Rechargeable Lithium Ion Batteries - Influence of Graphite Surface Modification on the Formation of the Solid Electrolyte Interphase [J].
Buqa, H. ;
Blyth, R. I. R. ;
Golob, P. ;
Evers, B. ;
Schneider, I. ;
Alvarez, M. V. Santis ;
Hofer, F. ;
Netzer, F. P. ;
Ramsey, M. G. ;
Winter, M. ;
Besenhard, J. O. .
IONICS, 2000, 6 (3-4) :172-179