Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting (Reprinted from J. Phys. Chem. B, vol 104, pg 8920-8924, 2000)

被引:143
作者
Licht, S [1 ]
Wang, B
Mukerji, S
Soga, T
Umeno, M
Tributsch, H
机构
[1] Technion Israel Inst Technol, Dept Chem, IL-32000 Haifa, Israel
[2] Nagoya Inst, Showa Ku, Nagoya, Aichi 466, Japan
[3] Hahn Meitner Inst Kernforsch Berlin GmbH, Abt Solare Energet, D-14109 Berlin, Germany
关键词
D O I
10.1016/S0360-3199(00)00133-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Contemporary models are shown to significantly underestimate the attainable efficiency of solar energy conversion to water splitting, and experimentally a cell containing illuminated AlGaAs/Si RuO2/Pt-black is demonstrated to evolve H-2 and O-2 at record solar-driven water electrolysis efficiency. Under illumination, bipolar configured Al0.15Ga0.85As (E-g = 1.6 eV) and Si (E-g = 1.1 eV) semiconductors generate open circuit and maximum power photopotentials of 1.57 and 1.30 V, well suited to the water electrolysis thermodynamic potential: H2O --> H-2 + 1/2O(2); E-H2O(degrees) = E-O2 - E-H2; E-H2O(degrees)(25 degreesC) = 1.229 V. The E-H2O(degrees)/photopotential matched semiconductors are combined with effective water electrolysis O-2 or H-2 electrocatalysts, RuO2 or Pt-black The resultant solar photoelectrolysis cell drives sustained water splitting at 18.3% conversion efficiencies. Alternate dual bandgap systems are calculated to be capable of attaining over 30% solar photoelectrolysis conversion efficiency. (C) 2001 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:653 / 659
页数:7
相关论文
共 31 条
  • [1] ANOMALOUS LOW-TEMPERATURE KINETIC EFFECTS FOR OXYGEN EVOLUTION ON RUO2 AND PT ELECTRODES
    ALONSOVANTE, N
    COLELL, H
    STIMMING, U
    TRIBUTSCH, H
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (29) : 7381 - 7384
  • [2] THE CONVERSION OF LIGHT AND WATER TO HYDROGEN AND ELECTRIC-POWER
    BOCKRIS, JO
    KAINTHLA, RC
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1988, 13 (06) : 375 - 383
  • [3] BOGANDOFF P, 1998, J ELECTROCHEM SOC, V145, P576
  • [4] LIMITING AND REALIZABLE EFFICIENCIES OF SOLAR PHOTOLYSIS OF WATER
    BOLTON, JR
    STRICKLER, SJ
    CONNOLLY, JS
    [J]. NATURE, 1985, 316 (6028) : 495 - 500
  • [5] CORRELATION OF PHOTOCURRENT-VOLTAGE CURVES WITH FLAT-BAND POTENTIAL FOR STABLE PHOTOELECTRODES FOR PHOTOELECTROLYSIS OF WATER
    BOLTS, JM
    WRIGHTON, MS
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1976, 80 (24) : 2641 - 2645
  • [6] ACCELERATED PUBLICATION - 30.2-PERCENT EFFICIENT GAINP/GAAS MONOLITHIC 2-TERMINAL TANDEM CONCENTRATOR CELL
    FRIEDMAN, DJ
    KURTZ, SR
    BERTNESS, KA
    KIBBLER, AE
    KRAMER, C
    OLSON, JM
    KING, DL
    HANSEN, BR
    SNYDER, JK
    [J]. PROGRESS IN PHOTOVOLTAICS, 1995, 3 (01): : 47 - 50
  • [7] ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE
    FUJISHIMA, A
    HONDA, K
    [J]. NATURE, 1972, 238 (5358) : 37 - +
  • [8] Green MA, 1999, PROG PHOTOVOLTAICS, V7, P31, DOI 10.1002/(SICI)1099-159X(199901/02)7:1<31::AID-PIP254>3.0.CO
  • [9] 2-B
  • [10] GUTMAN F, 1983, MOD ASPECT ELECTROC, P5