Insulin modulates ischemia-induced endothelial progenitor cell mobilization and neovascularization in diabetic mice

被引:31
作者
Dong, Li [1 ]
Kang, Lina [1 ]
Ding, Liang [1 ]
Chen, Qin [1 ]
Bai, Jian [1 ]
Gu, Rong [1 ]
Li, Lixin [2 ]
Xu, Biao [1 ]
机构
[1] Nanjing Univ, Sch Med, Dept Cardiol, Drum Tower Hosp, Nanjing 210008, Peoples R China
[2] St Michaels Hosp, Dept Endocrinol LL, Toronto, ON M5B 1W8, Canada
基金
美国国家科学基金会;
关键词
NITRIC-OXIDE SYNTHASE; GROWTH-FACTOR; EXPRESSION; STEM; IMPAIRMENT; ANGIOGENESIS; RECRUITMENT; HYPOXIA; AKT;
D O I
10.1016/j.mvr.2011.09.006
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Decreased levels of circulating endothelial progenitor cells (EPCs) predict increased risk of cardiovascular events in diabetic patients. Insulin treatment exerts important cardiovascular protection. Whether and how insulin participates in the EPC regulation of postnatal neovascularization are currently unclear. We employed a mouse hindlimb ischemia model to study EPC mobilization in non-diabetic and streptozotocin-induced diabetic mice. Insulin was administered to diabetic animals postoperatively. To determine the role of EPCs contributing to postnatal vasculogenesis, we used bone marrow-transplanted mice whose bone marrow cells selectively expressed enhanced green fluorescent protein (EGFP). Insulin treatment improved EPC mobilization into peripheral blood, accelerated transcutaneous oxygen pressure restoration and increased capillary density in the ischemic limb associated with partial incorporation of EGFP-positive cells into the capillaries. Insulin treatment restored ischemia-induced release of stromal-derived growth factor 1 a and vascular endothelial growth factor (VEGF), and consequently enhanced the activity of Akt and endothelial nitric oxide synthase (eNOS) as well as matrix metalloproteinase-9 in bone marrow. Insulin also augmented tissue-level activation of VEGF/Akt/eNOS pathway. However, all such effects of insulin were completely blocked by combined treatment with a NOS inhibitor. Our data suggested that insulin treatment improved ischemia-induced EPC mobilization and contributed to compensatory neovascularization in diabetic mice through a VEGF/eNOS-related pathway. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:227 / 236
页数:10
相关论文
共 35 条
[1]   Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis [J].
Ackah, E ;
Yu, J ;
Zoellner, S ;
Iwakiri, Y ;
Skurk, C ;
Shibata, R ;
Ouchi, N ;
Easton, RM ;
Galasso, G ;
Birnbaum, MJ ;
Walsh, K ;
Sessa, WC .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (08) :2119-2127
[2]   Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells [J].
Aicher, A ;
Heeschen, C ;
Mildner-Rihm, C ;
Urbich, C ;
Ihling, C ;
Technau-Ihling, K ;
Zeiher, AM ;
Dimmeler, S .
NATURE MEDICINE, 2003, 9 (11) :1370-1376
[3]   Isolation of putative progenitor endothelial cells for angiogenesis [J].
Asahara, T ;
Murohara, T ;
Sullivan, A ;
Silver, M ;
vanderZee, R ;
Li, T ;
Witzenbichler, B ;
Schatteman, G ;
Isner, JM .
SCIENCE, 1997, 275 (5302) :964-967
[4]   Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization [J].
Asahara, T ;
Masuda, H ;
Takahashi, T ;
Kalka, C ;
Pastore, C ;
Silver, M ;
Kearne, M ;
Magner, M ;
Isner, JM .
CIRCULATION RESEARCH, 1999, 85 (03) :221-228
[5]   VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells [J].
Asahara, T ;
Takahashi, T ;
Masuda, H ;
Kalka, C ;
Chen, DH ;
Iwaguro, H ;
Inai, Y ;
Silver, M ;
Isner, JM .
EMBO JOURNAL, 1999, 18 (14) :3964-3972
[6]   Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells [J].
Caballero, Sergio ;
Sengupta, Nilanjana ;
Afzal, Aqeela ;
Chang, Kyung-Hee ;
Calzi, Sergio Li ;
Guberski, Dennis L. ;
Kern, Timothy S. ;
Grant, Maria B. .
DIABETES, 2007, 56 (04) :960-967
[7]   Hyperglycentia regulates hypoxia-inducible factor-1α protein stability and function [J].
Catrina, SB ;
Okamoto, K ;
Pereira, T ;
Brismar, K ;
Poellinger, L .
DIABETES, 2004, 53 (12) :3226-3232
[8]   Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue [J].
Ceradini, DJ ;
Gurtner, GC .
TRENDS IN CARDIOVASCULAR MEDICINE, 2005, 15 (02) :57-63
[9]   Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase Akt and cyclooxygenase-2 [J].
Chen, Qin ;
Dong, Li ;
Wang, Lian ;
Kang, Lina ;
Xu, Biao .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 381 (02) :192-197
[10]   Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic states - A possible explanation for impaired collateral formation in cardiac tissue [J].
Chou, E ;
Suzuma, I ;
Way, KJ ;
Opland, D ;
Clermont, AC ;
Naruse, K ;
Suzuma, K ;
Bowling, NL ;
Vlahos, CJ ;
Aiello, LP ;
King, GL .
CIRCULATION, 2002, 105 (03) :373-379