A new radiation detector made of multi-walled carbon

被引:18
作者
Ambrosio, A. [1 ,2 ]
Ambrosio, M. [2 ]
Ambrosone, G. [2 ,3 ]
Carillo, V. [2 ]
Coscia, U. [2 ,3 ]
Grossi, V. [4 ,5 ]
Maddalena, P. [2 ,3 ]
Passacantando, M. [4 ,5 ]
Perillo, E. [2 ,3 ]
Raulo, A. [2 ,3 ]
Santucci, S. [4 ,5 ]
机构
[1] Complesso Univ Mt St Angelo, CRS COHERENTIA, CNR, INFM, I-80126 Naples, Italy
[2] Complesso Univ Mt St Angelo, Sez Napoli, INFM, I-80126 Naples, Italy
[3] Univ Naples Federico II, Complesso Univ Mt St Angelo, Dipartimento Sci Fis, I-80126 Naples, Italy
[4] Univ Aquila, Dipartimento Fis, Ist Nazl Fis Nucl, I-67010 Laquila, Italy
[5] Univ Aquila, Dipartimento Fis, CNR, INFM, I-67010 Laquila, Italy
关键词
carbon nanotubes; radiation detectors; nanostructured materials;
D O I
10.1016/j.nima.2008.03.004
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We report first results on a microstrip radiation detector made of multi-walled carbon nanotubes directly grown on a sapphire substrate between platinum electrodes. Signals induced in nanotubes by pulsed laser beams have been collected and analysed at three different wavelengths, 355, 532 and 1064 nm. Improvement of sensitivity towards UV wavelengths has been observed reflecting the shape of the absorbance spectrum of material. Signals clearly indicate the production of charges and the subsequent transport in the direction of the applied electric field. Measurement of the charge amount collected at different drain voltages as well as the detection efficiency are reported for each of the three wavelengths exploited. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:398 / 403
页数:6
相关论文
共 19 条
[1]   Photoelectronic transport imaging of individual semiconducting carbon nanotubes [J].
Balasubramanian, K ;
Fan, YW ;
Burghard, M ;
Kern, K ;
Friedrich, M ;
Wannek, U ;
Mews, A .
APPLIED PHYSICS LETTERS, 2004, 84 (13) :2400-2402
[2]   Ab initio calculations of electron affinity and ionization potential of carbon nanotubes [J].
Buonocore, F. ;
Trani, F. ;
Ninno, D. ;
Di Matteo, A. ;
Cantele, G. ;
Iadonisi, G. .
NANOTECHNOLOGY, 2008, 19 (02)
[3]   Large photocurrent generation in multiwall carbon nanotubes [J].
Castrucci, P. ;
Tombolini, F. ;
Scarselli, M. ;
Speiser, E. ;
Del Gobbo, S. ;
Richter, W. ;
De Crescenzi, M. ;
Diociaiuti, M. ;
Gatto, E. ;
Venanzi, M. .
APPLIED PHYSICS LETTERS, 2006, 89 (25)
[4]   Solution properties of single-walled carbon nanotubes [J].
Chen, J ;
Hamon, MA ;
Hu, H ;
Chen, YS ;
Rao, AM ;
Eklund, PC ;
Haddon, RC .
SCIENCE, 1998, 282 (5386) :95-98
[5]   Engineering carbon nanotubes and nanotube circuits using electrical breakdown [J].
Collins, PC ;
Arnold, MS ;
Avouris, P .
SCIENCE, 2001, 292 (5517) :706-709
[6]   Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites [J].
Du, FM ;
Fischer, JE ;
Winey, KI .
PHYSICAL REVIEW B, 2005, 72 (12)
[7]   Characterization of transport properties of multiwalled carbon nanotube networks by microwave plasma chemical vapor deposition [J].
Hayashi, Yasuhiko ;
Tokunaga, T. ;
Kaneko, K. ;
Horita, Z. .
DIAMOND AND RELATED MATERIALS, 2006, 15 (4-8) :1138-1142
[8]   Logic gates and computation from assembled nanowire building blocks [J].
Huang, Y ;
Duan, XF ;
Cui, Y ;
Lauhon, LJ ;
Kim, KH ;
Lieber, CM .
SCIENCE, 2001, 294 (5545) :1313-1317
[9]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[10]   Electrical characterization of individual carbon nanotubes grown in nanoporous anodic alumina templates [J].
Jang, WY ;
Kulkarni, NN ;
Shih, CK ;
Yao, Z .
APPLIED PHYSICS LETTERS, 2004, 84 (07) :1177-1179