Solution in time domain of ultrasonic propagation equation in a porous material

被引:22
作者
Fellah, ZEA
Fellah, M
Lauriks, W
Depollier, C
Chapelon, JY
Angel, YC
机构
[1] Natl Inst Hlth & Med Res, INSERM U556, F-69424 Lyon 03, France
[2] USTHB, Inst Phys, Phys Theor Lab, Bab Ezzouar 16111, Algeria
[3] Katholieke Univ Leuven, Lab Akoestiek & Therm Fys, B-3001 Heverlee, Belgium
[4] Univ Maine, Acoust Lab, UMR CNRS 6613, F-72085 Le Mans 09, France
关键词
D O I
10.1016/S0165-2125(03)00045-3
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper provides an analytical solution in the time domain for the propagation of transient ultrasonic waves in a homogeneous isotropic porous material having a rigid frame. The coefficients of the propagation equation are constant and depend only on the acoustical parameters of the porous material. The propagation equation contains fractional derivative terms that describe viscous and thermal interactions between the solid and the fluid. The dynamic response of the material is obtained using the Laplace transform method. An experimental application to porous plastic foams is given to validate the solution of the propagation equation. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:151 / 163
页数:13
相关论文
共 17 条
[1]  
Allard J.F., 1993, Propagation of sound in porous media, DOI [10.1002/9780470747339, DOI 10.1002/9780470747339]
[2]   ON THE ACOUSTIC SLOW WAVE IN AIR-FILLED GRANULAR MEDIA [J].
ATTENBOROUGH, K .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1987, 81 (01) :93-102
[3]   ON THE FRACTIONAL CALCULUS MODEL OF VISCOELASTIC BEHAVIOR [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1986, 30 (01) :133-155
[6]   VIBRATIONS OF AN INFINITE PLATE WITH A FREQUENCY INDEPENDENT Q [J].
CAPUTO, M .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1976, 60 (03) :634-639
[7]   Transient acoustic wave propagation in rigid porous media: A time-domain approach [J].
Fellah, ZEA ;
Depollier, C .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2000, 107 (02) :683-688
[8]  
Gradshteyn I.S., 1994, Tables of Integrals, Series, and Products
[9]   A DISPERSIVE MODEL FOR THE PROPAGATION OF ULTRASOUND IN SOFT-TISSUE [J].
GURUMURTHY, KV ;
ARTHUR, RM .
ULTRASONIC IMAGING, 1982, 4 (04) :355-377
[10]   THEORY OF DYNAMIC PERMEABILITY AND TORTUOSITY IN FLUID-SATURATED POROUS-MEDIA [J].
JOHNSON, DL ;
KOPLIK, J ;
DASHEN, R .
JOURNAL OF FLUID MECHANICS, 1987, 176 :379-402