Nitrogen-fixation strategies and Fe requirements in cyanobacteria

被引:157
作者
Berman-Frank, Ilana [1 ]
Quigg, Antonietta
Finkel, Zoe V.
Irwin, Andrew J.
Haramaty, Liti
机构
[1] Bar Ilan Univ, Mina & Everard Fac Life Sci, IL-52900 Ramat Gan, Israel
[2] Texas A&M Univ, Dept Marine Biol, Galveston, TX 77551 USA
[3] Mt Allison Univ, Environm Sci Program, Sackville, NB E4L 1A7, Canada
[4] Mt Allison Univ, Math & Comp Sci Dept, Sackville, NB E4L 1E6, Canada
[5] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA
关键词
D O I
10.4319/lo.2007.52.5.2260
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diazotrophic ( nitrogen-fixing) cyanobacteria are important contributors of new nitrogen to oligotrophic environments and greatly influence oceanic productivity. We investigated how iron availability influences the physiology of cyanobacterial diazotrophs with different strategies for segregating nitrogen fixation and photosynthesis. We examined growth, photosynthesis, nitrogen fixation, and Fe requirements of the filamentous nonheterocystous Trichodesmium, the filamentous heterocystous Anabaena, and the unicellular Cyanothece under a range of Fe concentrations. Under similar Fe concentrations the three species differed in N-2-fixation rates, photosynthetic activity, the relative abundance of the photosynthetic units PSI : PSII, elemental stoichiometry, and Fe use efficiency. Complex colonial forms such as Trichodesmium and Anabaena are more likely to be Fe limited in their natural environments and are more efficient at utilizing Fe than unicellular diazotrophs such as Cyanothece. The varied physiological responses to Fe availability of the three cyanobacteria reflect their nitrogen-fixation strategies, cell size, unicellular or colonial organization, and may explain, at least in part, the ecological distribution of these photosynthetic bacteria.
引用
收藏
页码:2260 / 2269
页数:10
相关论文
共 60 条
[1]   Heterocyst formation in cyanobacteria [J].
Adams, DG .
CURRENT OPINION IN MICROBIOLOGY, 2000, 3 (06) :618-624
[2]  
[Anonymous], 2000, MICROBIAL ECOLOGY OC
[3]   Widespread iron limitation of phytoplankton in the South Pacific Ocean [J].
Behrenfeld, MJ ;
Kolber, ZS .
SCIENCE, 1999, 283 (5403) :840-843
[4]   N-2 fixation by non-heterocystous cyanobacteria [J].
Bergman, B ;
Gallon, JR ;
Rai, AN ;
Stal, LJ .
FEMS MICROBIOLOGY REVIEWS, 1997, 19 (03) :139-185
[5]   Nitrogen-fixing cyanobacteria in tropical oceans, with emphasis on the Western Indian Ocean [J].
Bergman, B .
SOUTH AFRICAN JOURNAL OF BOTANY, 2001, 67 (03) :426-432
[6]   The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway [J].
Berman-Frank, I ;
Bidle, KD ;
Haramaty, L ;
Falkowski, PG .
LIMNOLOGY AND OCEANOGRAPHY, 2004, 49 (04) :997-1005
[7]   Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria [J].
Berman-Frank, I ;
Lundgren, P ;
Falkowski, P .
RESEARCH IN MICROBIOLOGY, 2003, 154 (03) :157-164
[8]   Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium [J].
Berman-Frank, I ;
Cullen, JT ;
Shaked, Y ;
Sherrell, RM ;
Falkowski, PG .
LIMNOLOGY AND OCEANOGRAPHY, 2001, 46 (06) :1249-1260
[9]   Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium [J].
Berman-Frank, I ;
Lundgren, P ;
Chen, YB ;
Küpper, H ;
Kolber, Z ;
Bergman, B ;
Falkowski, P .
SCIENCE, 2001, 294 (5546) :1534-1537
[10]  
Capone DG., 1993, HDB METHODS AQUATIC, P621, DOI 10.1201/9780203752746-74