The role of transition metal interfaces on the electronic transport in lithium-air batteries

被引:88
作者
Chen, Jingzhe [2 ,3 ]
Hummelshoj, Jens S. [4 ]
Thygesen, Kristian S. [2 ,3 ]
Myrdal, Jon S. G. [1 ,2 ,3 ]
Norskov, Jens K. [4 ,5 ]
Vegge, Tejs [1 ]
机构
[1] Tech Univ Denmark, Riso Natl Lab Sustainable Energy, Mat Res Div, DK-4000 Roskilde, Denmark
[2] Tech Univ Denmark, Ctr Atom Scale Mat Design, DK-2800 Lyngby, Denmark
[3] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[4] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
[5] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
关键词
Lithium-air batteries; Density functional theory; Electronic transport; HIGH-CAPACITY; SOLID-STATE; CATHODE; ELECTROLYTES; DISCHARGE; ALLOYS; ANODES;
D O I
10.1016/j.cattod.2010.12.022
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Low electronic conduction is expected to be a main limiting factor in the performance of reversible lithium-air, Li-O-2, batteries. Here, we apply density functional theory and non-equilibrium Green's function calculations to determine the electronic transport through lithium peroxide, Li2O2, formed at the cathode during battery discharge. We find the transport to depend on the orientation and lattice matching of the insulator-metal interface in the presence of Au and Pt catalysts. Bulk lithium vacancies are found to be available and mobile under battery charging conditions, and found to pin the Fermi level at the top of the anti bonding peroxide pi*(2p(x)) and pi*(2p(y)) levels in the Li2O2 valence band. Under an applied bias, this can result in a reduced transmission, since the anti bonding sigma*(2p(z)) level in the Li2O2 conduction band is found to couple strongly to the metal substrate and create localized interface states with poor coupling to the Li2O2 bulk states. These observations provide a possible explanation for the higher overpotential observed for charging than discharge. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 9
页数:8
相关论文
共 53 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]  
[Anonymous], 1998, CLASSICAL QUANTUM DY
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   High energy density all-solid-state batteries: A challenging concept towards 3D integration [J].
Baggetto, Loic ;
Niessen, Rogier A. H. ;
Roozeboom, Fred ;
Notten, Peter H. L. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (07) :1057-1066
[5]   An object-oriented scripting interface to a legacy electronic structure code [J].
Bahn, SR ;
Jacobsen, KW .
COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) :56-66
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[8]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[9]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[10]  
Chase M.W., 1998, J. of Physical and Chemical Reference Data, DOI 10.18434/T42S31