Multi-scale neural texture classification using the GPU as a stream processing engine

被引:6
作者
Martinez-Zarzuela, M.
Diaz-Pernas, F. J.
Anton-Rodriguez, M.
Diez-Higuera, J. F.
Gonzalez-Ortega, D.
Boto-Giralda, D.
Lopez-Gonzalez, F.
De La Torre, I.
机构
[1] Edificio de Tecnologías de la Información y Las Telecomunicaciones, Valladolid 47011
关键词
Texture classification; Stream processing; Visual system; GPU; Neural processing; COLOR; ARCHITECTURE; SENSITIVITY; RETRIEVAL; FEATURES; CONTRAST; ROTATION; MODELS; SYSTEM;
D O I
10.1007/s00138-010-0254-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A neural architecture for texture classification running on the Graphics Processing Unit (GPU) under a stream processing model is presented in this paper. Textural features extraction is done in three different scales, it is based on the computations that take place on the mammalian primary visual pathway and incorporates both structural and color information. Feature vectors classification is done using a fuzzy neural network which introduces pattern analysis for orientation invariant texture recognition. Performance tests are done over a varying number of textures and the entire VisTex database. The intrinsic parallelism of the neural system led us to implement the whole architecture to run on GPUs, providing a speed-up between x 16 and x 25 for classifying textures of sizes 128 x 128 and 512 x 512 px with respect to an implementation on the CPU. A comparison of classification rates obtained with other methods is included and shows the great performance of the architecture. An average classification rate of 85.2% is obtained for 167 textures of size 512 x 512 px.
引用
收藏
页码:947 / 966
页数:20
相关论文
共 47 条
[1]  
[Anonymous], 2009, NVIDIA CUDA Programming Guide
[2]  
[Anonymous], 2005, GPU GEMS
[3]   Recognition of coloured and textured images through a multi-scale neural architecture with orientational filtering and chromatic diffusion [J].
Anton-Rodriguez, M. ;
Diaz-Pernas, F. J. ;
Diez-Higuera, J. F. ;
Martinez-Zarzuela, M. ;
Gonzalez-Ortega, D. ;
Boto-Giralda, D. .
NEUROCOMPUTING, 2009, 72 (16-18) :3713-3725
[4]   FUZZY ARTMAP - A NEURAL NETWORK ARCHITECTURE FOR INCREMENTAL SUPERVISED LEARNING OF ANALOG MULTIDIMENSIONAL MAPS [J].
CARPENTER, GA ;
GROSSBERG, S ;
MARKUZON, N ;
REYNOLDS, JH ;
ROSEN, DB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (05) :698-713
[5]  
Díaz-Pernas FJ, 2009, LECT NOTES COMPUT SC, V5602, P294, DOI 10.1007/978-3-642-02267-8_32
[6]  
DIAZPERNAS FJ, 2010, EXP SYST IN PRESS
[7]   Experiments in colour texture analysis [J].
Drimbarean, A ;
Whelan, PF .
PATTERN RECOGNITION LETTERS, 2001, 22 (10) :1161-1167
[8]   USING GRAPHICS DEVICES IN REVERSE: GPU-BASED MAGE PROCESSING AND COMPUTER VISION [J].
Fung, James ;
Mann, Steve .
2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, :9-+
[9]  
GREENSPAN H, 1994, INT C PATT RECOG, P162, DOI 10.1109/ICPR.1994.576896
[10]  
GREENSPAN H, 1996, EARLY VISUAL LEARNIN