Specific ion effects:: Interaction between nanoparticles in electrolyte solutions

被引:16
作者
Deniz, V. [2 ]
Bostrom, M. [2 ,3 ]
Bratko, D. [4 ,5 ]
Tavares, F. W. [1 ]
Ninham, B. W. [6 ]
机构
[1] Univ Fed Rio de Janeiro, Escola Quim, BR-21949900 Rio De Janeiro, Brazil
[2] Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden
[3] Univ Regensburg, Inst Phys & Theoret Chem, D-93040 Regensburg, Germany
[4] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA
[5] Virginia Commonwealth Univ, Dept Chem, Richmond, VA 23284 USA
[6] Australian Natl Univ, Res Sch Phys Sci & Engn, Canberra, ACT, Australia
基金
美国国家科学基金会;
关键词
Hofmeister effect; polarizability; ionic dispersion potentials; nanoparticles; OZ-HNC integral equation; phase diagram;
D O I
10.1016/j.colsurfa.2007.08.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dependence of colloidal interactions on salt identity, observed frequently in experiments, can be accounted for once ion specific non-electrostatic forces are included in the theory. Ability to predict the effect of added salt on the phase diagram of colloid dispersions is essential for the design of processes involving nanocolloids. The Ornstein-Zernike equation with hypernetted chain closure approximation provides a viable first estimate for the potential of mean force between ionized nanoparticles like alumina aggregates in aqueous electrolytes subject to dispersion interactions with hydrated simple ions. Calculated potentials of mean force enable the prediction of osmotic second virial coefficients and phase diagrams showing a dramatic dependence on ion type. The choice of salt therefore provides an efficient, non-intrusive way to tune the phase behavior of nanoparticle dispersions. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 102
页数:5
相关论文
共 36 条
[1]  
[Anonymous], THEORY STABILITY LYO
[2]  
[Anonymous], 2004, CURR OPIN COLLOID IN, V9
[3]   A HYPERNETTED CHAIN STUDY OF HIGHLY ASYMMETRICAL POLY-ELECTROLYTES [J].
BELLONI, L .
CHEMICAL PHYSICS, 1985, 99 (01) :43-54
[4]   MEAN SPHERICAL MODEL FOR ASYMMETRIC ELECTROLYTES .1. METHOD OF SOLUTION [J].
BLUM, L .
MOLECULAR PHYSICS, 1975, 30 (05) :1529-1535
[5]   Energy of an ion crossing a low dielectric membrane:: the role of dispersion self-free energy [J].
Boström, M ;
Ninham, BW .
BIOPHYSICAL CHEMISTRY, 2005, 114 (2-3) :95-101
[6]   Specific ion effects:: Role of salt and buffer in protonation of cytochrome c [J].
Boström, M ;
Williams, DRM ;
Ninham, BW .
EUROPEAN PHYSICAL JOURNAL E, 2004, 13 (03) :239-245
[7]   Specific ion effects in solutions of globular proteins:: Comparison between analytical models and simulation [J].
Boström, M ;
Tavares, FW ;
Bratko, D ;
Ninham, BW .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (51) :24489-24494
[8]   Hofmeister effects in surface tension of aqueous electrolyte solution [J].
Boström, M ;
Kunz, W ;
Ninham, BW .
LANGMUIR, 2005, 21 (06) :2619-2623
[9]   Specific ion effects:: Why DLVO theory fails for biology and colloid systems -: art. no. 168103 [J].
Boström, M ;
Williams, DRM ;
Ninham, BW .
PHYSICAL REVIEW LETTERS, 2001, 87 (16) :168103/1-168103/4
[10]   Special ion effects:: Why the properties of lysozyme in salt solutions follow a Hofmeister series [J].
Boström, M ;
Williams, DRM ;
Ninham, BW .
BIOPHYSICAL JOURNAL, 2003, 85 (02) :686-694