N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo

被引:142
作者
Armbruster, BN
Banik, SSR
Guo, CH
Smith, AC
Counter, CM
机构
[1] Duke Univ, Med Ctr, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Radiat Oncol, Durham, NC 27710 USA
关键词
D O I
10.1128/MCB.21.22.7775-7786.2001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most tumor cells depend upon activation of the ribonucleoprotein enzyme telomerase for telomere maintenance and continual proliferation. The catalytic activity of this enzyme can be reconstituted in vitro with the RNA (hTR) and catalytic (hTERT) subunits. However, catalytic activity alone is insufficient for the full in vivo function of the enzyme. In addition, the enzyme must localize to the nucleus, recognize chromosome ends, and orchestrate telomere elongation in a highly regulated fashion. To identify domains of hTERT involved in these biological functions, we introduced a panel of 90 N-terminal hTERT substitution mutants into telomerase-negative cells and assayed the resulting cells for catalytic activity and, as a marker of in vivo function, for cellular proliferation. We found four domains to be essential for in vitro and in vivo enzyme activity, two of which were required for hTR binding. These domains map to regions defined by sequence alignments and mutational analysis in yeast, indicating that the N terminus has also been functionally conserved throughout evolution. Additionally, we discovered a novel domain, DAT, that "dissociates activities of telomerase," where mutations left the enzyme catalytically active, but was unable to function in vivo. Since mutations in this domain had no measurable effect on hTERT homomultimerization, hTR binding, or nuclear targeting, we propose that this domain is involved in other aspects of in vivo telomere elongation. The discovery of these domains provides the first step in dissecting the biological functions of human telomerase, with the ultimate goal of targeting this enzyme for the treatment of human cancers.
引用
收藏
页码:7775 / 7786
页数:12
相关论文
共 66 条
[1]  
Avilion AA, 1996, CANCER RES, V56, P645
[2]  
BACCHETTI S, 1995, INT J ONCOL, V7, P423
[3]   Expression of hTERT and hTR in cis reconstitutes an active human telomerase ribonucleoprotein [J].
Bachand, F ;
Kukolj, G ;
Autexier, C .
RNA, 2000, 6 (05) :778-784
[4]   Functional reconstitution of human telomerase expressed in Saccharomyces cerevisiae [J].
Bachand, F ;
Autexier, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (53) :38027-38031
[5]   Functional regions of human telomerase reverse transcriptase and human telomerase RNA required for telomerase activity and RNA-protein interactions [J].
Bachand, F ;
Autexier, C .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (05) :1888-1897
[6]   Polymerization defects within human telomerase are distinct from telomerase RNA and TEP1 binding [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (10) :3329-3340
[7]  
Blackburn EH, 1995, TELOMERES
[8]   The telomere lengthening mechanism in telomerase-negative immortal human cells does not involve the telomerase RNA subunit [J].
Bryan, TM ;
Marusic, L ;
Bacchetti, S ;
Namba, M ;
Reddel, RR .
HUMAN MOLECULAR GENETICS, 1997, 6 (06) :921-926
[9]   Telomerase reverse transcriptase genes identified in Tetrahymena thermophila and Oxytricha trifallax [J].
Bryan, TM ;
Sperger, JM ;
Chapman, KB ;
Cech, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8479-8484
[10]   Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase [J].
Bryan, TM ;
Goodrich, KJ ;
Cech, TR .
MOLECULAR CELL, 2000, 6 (02) :493-499