Among the wide variety of piezoelectric materials available, polymers offer an interesting solution because of their high mechanical flexibility, easy processing, and conformable features; they maintain good ferroelectric and piezoelectric properties. The most prominent examples of these are poly(vinylidene fluoride) (PVDF) and its copolymer, poly(vinylidene difluoride-trifluoroethylene) [P(VDF-TrFE)]. An attractive prospective consists of the preparation of nanostructured polymers. It has been shown that the dimensional confinement of such macromolecules down to the nanoscale can improve their piezoelectric properties because the tailoring of the chemical structure is performed at the molecular level. In this review, we show how nanostructured polymers can be obtained and discuss reports on the ferroelectric and piezoelectric properties of nanostructured PVDF and P(VDF-TrFE) materials. In particular, we show how dimensional confinement leads to piezoelectric nanostructures with relevant performances, with a focus on the macromolecular structural arrangement that enhances their behavior. Experimental results and applications are also reported to compare the performances of different nanostructuration processes and the polymer efficiencies as piezoelectric materials. (c) 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41667.