Molecular cloning of mouse type 2 and type 3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant

被引:92
作者
Iwai, M
Tateishi, Y
Hattori, M
Mizutani, A
Nakamura, T
Futatsugi, A
Inoue, T
Furuichi, T
Michikawa, T
Mikoshiba, K
机构
[1] Univ Tokyo, Inst Med Sci, Div Mol Neurobiol, Dept Basic Med Sci,Minato Ku, Tokyo 1088639, Japan
[2] Japan Sci & Technol Agcy, Calcium Oscillat Project, Int Cooperat Res Project, Tokyo 1080071, Japan
[3] RIKEN, Brain Sci Inst, Lab Mol Neurogenesis, Wako, Saitama 3510198, Japan
[4] RIKEN, Brain Sci Inst, Dev Neurobiol Lab, Wako, Saitama 3510198, Japan
[5] Univ Tokyo, Inst Med Sci, NTT IMSUT, Dept Basic Med Sci,Div Neural Signal Informat, Tokyo 1088639, Japan
关键词
D O I
10.1074/jbc.M413824200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We isolated cDNAs encoding type 2 and type 3 inositol 1,4,5-trisphosphate (IP3) receptors (IP(3)R2 and IP(3)R3, respectively) from mouse lung and found a novel alternative splicing segment, SIm2, at 176-208 of IP3R2. The long form (IP(3)R2 SIm2+) was dominant, but the short form (IP(3)R2 SIm2-) was detected in all tissues examined. IP(3)R2 SIm2- has neither IP3 binding activity nor Ca2+ releasing activity. In addition to its reticular distribution, IP(3)R2 SIm2+ is present in the form of clusters in the endoplasmic reticulum of resting COS-7 cells, and after ATP or Ca2+ ionophore stimulation, most of the IP(3)R2 SIm2+ is in clusters. IP(3)R3 is localized uniformly on the endoplasmic reticulum of resting cells and forms clusters after ATP or Ca2+ ionophore stimulation. IP(3)R2 SIm2- does not form clusters in either resting or stimulated cells. IP3 binding-deficient site-directed mutants of IP(3)R2 SIm2+ and IP(3)R3 fail to form clusters, indicating that IP3 binding is involved in the cluster formation by these isoforms. Coexpression of IP(3)R2 SIm2+ prevents stimulus-induced IP3R clustering, suggesting that IP(3)R2 SIm2- functions as a negative coordinator of stimulus-induced IP3R clustering. Expression of IP(3)R2 SIm2- in CHO-K1 cells significantly reduced ATP-induced Ca2+ entry, but not Ca2+ release, suggesting that the novel splice variant of IP(3)R2 specifically influences the dynamics of the sustained phase of Ca2+ signals.
引用
收藏
页码:10305 / 10317
页数:13
相关论文
共 73 条
[1]   RANGE OF MESSENGER ACTION OF CALCIUM-ION AND INOSITOL 1,4,5-TRISPHOSPHATE [J].
ALLBRITTON, NL ;
MEYER, T ;
STRYER, L .
SCIENCE, 1992, 258 (5089) :1812-1815
[2]   IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor [J].
Ando, H ;
Mizutani, A ;
Matsu-ura, T ;
Mikoshiba, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (12) :10602-10612
[3]   Inositol 1,4,5-trisphosphate receptors are strongly expressed in the nervous system, pharynx, intestine, gonad and excretory cell of Caenorhabditis elegans and are encoded by a single gene (itr-1) [J].
Baylis, HA ;
Furuichi, T ;
Yoshikawa, F ;
Mikoshiba, K ;
Sattelle, DB .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 294 (02) :467-476
[4]   INOSITOL TRISPHOSPHATE AND CALCIUM SIGNALING [J].
BERRIDGE, MJ .
NATURE, 1993, 361 (6410) :315-325
[5]   Elementary and global aspects of calcium signalling [J].
Berridge, MJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 499 (02) :291-306
[6]  
BLONDEL O, 1993, J BIOL CHEM, V268, P11356
[7]   THE ELEMENTAL PRINCIPLES OF CALCIUM SIGNALING [J].
BOOTMAN, MD ;
BERRIDGE, MJ .
CELL, 1995, 83 (05) :675-678
[8]   Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand [J].
Bosanac, I ;
Alattia, JR ;
Mal, TK ;
Chan, J ;
Talarico, S ;
Tong, FK ;
Tong, KI ;
Yoshikawa, F ;
Furuichi, T ;
Iwai, M ;
Michikawa, T ;
Mikoshiba, K ;
Ikura, M .
NATURE, 2002, 420 (6916) :696-700
[9]   Receptor clustering as a cellular mechanism to control sensitivity [J].
Bray, D ;
Levin, MD ;
Morton-Firth, CJ .
NATURE, 1998, 393 (6680) :85-88
[10]   Phasic characteristic of elementary Ca2+ release sites underlies quantal responses to IP3 [J].
Callamaras, N ;
Parker, I .
EMBO JOURNAL, 2000, 19 (14) :3608-3617