Validating and improving elastic network models with molecular dynamics simulations

被引:47
作者
Romo, Tod D. [1 ]
Grossfield, Alan [1 ]
机构
[1] Univ Rochester, Med Ctr, Dept Biochem & Biophys, Rochester, NY 14642 USA
关键词
normal modes; principal component analysis; convergence; fluctuations; G protein-coupled receptors; COARSE-GRAINED MODEL; BIOMOLECULAR SIMULATION; PROTEINS; IDENTIFICATION; CONVERGENCE; BINDING;
D O I
10.1002/prot.22855
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Elastic network models (ENMs) are a class of simple models intended to represent the collective motions of proteins. In contrast to all-atom molecular dynamics simulations, the low computational investment required to use an ENM makes them ideal for speculative hypothesis-testing situations. Historically, ENMs have been validated via comparison to crystallographic B-factors, but this comparison is relatively low-resolution and only tests the predictions of relative flexibility. In this work, we systematically validate and optimize a number of ENM-type models by quantitatively comparing their predictions to microsecond-scale all-atom simulations of three different G protein coupled receptors. We show that, despite their apparent simplicity, well-optimized ENMs perform remarkably well, reproducing the protein fluctuations with an accuracy comparable to what one would expect from all-atom simulations run for several hundred nanoseconds. Proteins 2011; 79: 23-34. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:23 / 34
页数:12
相关论文
共 42 条
  • [1] Blue Gene: A vision for protein science using a petaflop supercomputer
    Allen, F
    Almasi, G
    Andreoni, W
    Beece, D
    Berne, BJ
    Bright, A
    Brunheroto, J
    Cascaval, C
    Castanos, J
    Coteus, P
    Crumley, P
    Curioni, A
    Denneau, M
    Donath, W
    Eleftheriou, M
    Fitch, B
    Fleischer, B
    Georgiou, CJ
    Germain, R
    Giampapa, M
    Gresh, D
    Gupta, M
    Haring, R
    Ho, H
    Hochschild, P
    Hummel, S
    Jonas, T
    Lieber, D
    Martyna, G
    Maturu, K
    Moreira, J
    Newns, D
    Newton, M
    Philhower, R
    Picunko, T
    Pitera, J
    Pitman, M
    Rand, R
    Royyuru, A
    Salapura, V
    Sanomiya, A
    Shah, R
    Sham, Y
    Singh, S
    Snir, M
    Suits, F
    Swetz, R
    Swope, WC
    Vishnumurthy, N
    Ward, TJC
    [J]. IBM SYSTEMS JOURNAL, 2001, 40 (02) : 310 - 327
  • [2] Angerson E., 1990, Proceedings of Supercomputing '90 (Cat. No.90CH2916-5), P2, DOI 10.1109/SUPERC.1990.129995
  • [3] [Anonymous], 1973, Introduction to matrix computations
  • [4] Anisotropy of fluctuation dynamics of proteins with an elastic network model
    Atilgan, AR
    Durell, SR
    Jernigan, RL
    Demirel, MC
    Keskin, O
    Bahar, I
    [J]. BIOPHYSICAL JOURNAL, 2001, 80 (01) : 505 - 515
  • [5] Normal Mode Analysis of Biomolecular Structures: Functional Mechanisms of Membrane Proteins
    Bahar, Ivet
    Lezon, Timothy R.
    Bakan, Ahmet
    Shrivastava, Indira H.
    [J]. CHEMICAL REVIEWS, 2010, 110 (03) : 1463 - 1497
  • [6] Ballesteros J. A., 1995, Neuroscience Methods, V25, P366, DOI [10.1016/S1043-9471(05)80049-7, DOI 10.1016/S1043-9471(05)80049-7, DOI 10.1016/S1043-9471]
  • [7] CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS
    BROOKS, BR
    BRUCCOLERI, RE
    OLAFSON, BD
    STATES, DJ
    SWAMINATHAN, S
    KARPLUS, M
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) : 187 - 217
  • [8] The Amber biomolecular simulation programs
    Case, DA
    Cheatham, TE
    Darden, T
    Gohlke, H
    Luo, R
    Merz, KM
    Onufriev, A
    Simmerling, C
    Wang, B
    Woods, RJ
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) : 1668 - 1688
  • [9] Doruker P, 2000, PROTEINS, V40, P512, DOI 10.1002/1097-0134(20000815)40:3<512::AID-PROT180>3.0.CO
  • [10] 2-M