Wavelet-based combined signal filtering and prediction

被引:99
作者
Renaud, O [1 ]
Starck, JL
Murtagh, F
机构
[1] Univ Geneva, Psychol Sect, CH-1211 Geneva, Switzerland
[2] CEA Saclay, DAPNIA, SEDI SAP, Serv Astrophys, F-91191 Gif Sur Yvette, France
[3] Univ London Royal Holloway & Bedford New Coll, Dept Comp Sci, Egham TW20 0EX, Surrey, England
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS | 2005年 / 35卷 / 06期
关键词
autoregression; filtering; forecasting; Kalman filter; model; resolution; scale; time series; wavelet transform;
D O I
10.1109/TSMCB.2005.850182
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We survey a number of applications of the wavelet transform in time series prediction. We show how multiresolution prediction can capture short-range and long-term dependencies with only a few parameters to be estimated. We then develop a new multiresolution methodology for combined noise filtering and prediction, based on an approach which is similar to the Kalman filter. Based on considerable experimental assessment, we demonstrate the powerfulness of this methodology.
引用
收藏
页码:1241 / 1251
页数:11
相关论文
共 24 条
[1]  
[Anonymous], 1998, Journal of Time Series Analysis, DOI DOI 10.1111/1467-9892.00090
[2]  
[Anonymous], TIME SERIES ANAL ITS
[3]  
AUSSEM A, 1998, J OFF STAT, V1, P65
[4]  
Bashir Z, 2000, 2000 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CONFERENCE PROCEEDINGS, VOLS 1 AND 2, P163, DOI 10.1109/CCECE.2000.849691
[5]  
Brockwell P. J., 1991, TIME SERIES THEORY M
[6]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[7]   Multirate, multiresolution, recursive Kalman filter [J].
Cristi, R ;
Tummala, M .
SIGNAL PROCESSING, 2000, 80 (09) :1945-1958
[8]   Multiscale autoregressive models and wavelets [J].
Daoudi, K ;
Frakt, AB ;
Willsky, AS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (03) :828-845
[9]  
Donoho D. L., 1993, Different, P173, DOI 10.1090/psapm/047
[10]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455